fix tau bound and init bound bug

This commit is contained in:
hongyi.zhou 2023-07-03 17:19:41 +02:00
parent 053a17889f
commit bd7e811a64
5 changed files with 32 additions and 15 deletions

View File

@ -55,6 +55,14 @@ class BlackBoxWrapper(gym.ObservationWrapper):
# self.traj_gen.set_mp_times(self.time_steps)
self.traj_gen.set_duration(self.duration, self.dt)
# check
self.tau_bound = [-np.inf, np.inf]
self.delay_bound = [-np.inf, np.inf]
if hasattr(self.traj_gen.phase_gn, "tau_bound"):
self.tau_bound = self.traj_gen.phase_gn.tau_bound
if hasattr(self.traj_gen.phase_gn, "delay_bound"):
self.delay_bound = self.traj_gen.phase_gn.delay_bound
# reward computation
self.reward_aggregation = reward_aggregation
@ -139,7 +147,8 @@ class BlackBoxWrapper(gym.ObservationWrapper):
position, velocity = self.get_trajectory(action)
position, velocity = self.env.set_episode_arguments(action, position, velocity)
traj_is_valid, position, velocity = self.env.preprocessing_and_validity_callback(action, position, velocity)
traj_is_valid, position, velocity = self.env.preprocessing_and_validity_callback(action, position, velocity,
self.tau_bound, self.delay_bound)
trajectory_length = len(position)
rewards = np.zeros(shape=(trajectory_length,))
@ -153,7 +162,8 @@ class BlackBoxWrapper(gym.ObservationWrapper):
if not traj_is_valid:
obs, trajectory_return, done, infos = self.env.invalid_traj_callback(action, position, velocity,
self.return_context_observation)
self.return_context_observation,
self.tau_bound, self.delay_bound)
return self.observation(obs), trajectory_return, done, infos
self.plan_steps += 1

View File

@ -52,7 +52,8 @@ class RawInterfaceWrapper(gym.Wrapper):
"""
return self.env.dt
def preprocessing_and_validity_callback(self, action: np.ndarray, pos_traj: np.ndarray, vel_traj: np.ndarray) \
def preprocessing_and_validity_callback(self, action: np.ndarray, pos_traj: np.ndarray, vel_traj: np.ndarray,
tau_bound: list = None, delay_bound: list = None ) \
-> Tuple[bool, np.ndarray, np.ndarray]:
"""
Used to preprocess the action and check if the desired trajectory is valid.
@ -61,6 +62,8 @@ class RawInterfaceWrapper(gym.Wrapper):
specified, else only traj_gen parameters
pos_traj: a vector instance of the raw position trajectory
vel_traj: a vector instance of the raw velocity trajectory
tau_bound: a list of two elements, the lower and upper bound of the trajectory length scaling factor
delay_bound: a list of two elements, the lower and upper bound of the time to wait before execute
Returns:
validity flag: bool, True if the raw trajectory is valid, False if not
pos_traj: a vector instance of the preprocessed position trajectory
@ -97,7 +100,8 @@ class RawInterfaceWrapper(gym.Wrapper):
"""
return True
def invalid_traj_callback(self, action: np.ndarray, pos_traj: np.ndarray, vel_traj: np.ndarray) -> Tuple[np.ndarray, float, bool, dict]:
def invalid_traj_callback(self, action: np.ndarray, pos_traj: np.ndarray, vel_traj: np.ndarray,
tau_bound: list, delay_bound: list) -> Tuple[np.ndarray, float, bool, dict]:
"""
Used to return a artificial return from the env if the desired trajectory is invalid.
Args:
@ -105,6 +109,8 @@ class RawInterfaceWrapper(gym.Wrapper):
specified, else only traj_gen parameters
pos_traj: a vector instance of the raw position trajectory
vel_traj: a vector instance of the raw velocity trajectory
tau_bound: a list of two elements, the lower and upper bound of the trajectory length scaling factor
delay_bound: a list of two elements, the lower and upper bound of the time to wait before execute
Returns:
obs: artificial observation if the trajectory is invalid, by default a zero vector
reward: artificial reward if the trajectory is invalid, by default 0

View File

@ -557,8 +557,8 @@ for _v in _versions:
kwargs_dict_tt_promp['name'] = _v
kwargs_dict_tt_promp['controller_kwargs']['p_gains'] = 0.5 * np.array([1.0, 4.0, 2.0, 4.0, 1.0, 4.0, 1.0])
kwargs_dict_tt_promp['controller_kwargs']['d_gains'] = 0.5 * np.array([0.1, 0.4, 0.2, 0.4, 0.1, 0.4, 0.1])
kwargs_dict_tt_promp['phase_generator_kwargs']['learn_tau'] = False
kwargs_dict_tt_promp['phase_generator_kwargs']['learn_delay'] = False
kwargs_dict_tt_promp['phase_generator_kwargs']['learn_tau'] = True
kwargs_dict_tt_promp['phase_generator_kwargs']['learn_delay'] = True
kwargs_dict_tt_promp['phase_generator_kwargs']['tau_bound'] = [0.8, 1.5]
kwargs_dict_tt_promp['phase_generator_kwargs']['delay_bound'] = [0.05, 0.15]
kwargs_dict_tt_promp['basis_generator_kwargs']['num_basis'] = 3

View File

@ -29,15 +29,16 @@ class TT_MPWrapper(RawInterfaceWrapper):
def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
return self.data.qvel[:7].copy()
def preprocessing_and_validity_callback(self, action, pos_traj, vel_traj):
return self.check_traj_validity(action, pos_traj, vel_traj)
def preprocessing_and_validity_callback(self, action: np.ndarray, pos_traj: np.ndarray, vel_traj: np.ndarray,
tau_bound: list, delay_bound:list):
return self.check_traj_validity(action, pos_traj, vel_traj, tau_bound, delay_bound)
def set_episode_arguments(self, action, pos_traj, vel_traj):
return pos_traj, vel_traj
def invalid_traj_callback(self, action: np.ndarray, pos_traj: np.ndarray, vel_traj: np.ndarray,
return_contextual_obs: bool) -> Tuple[np.ndarray, float, bool, dict]:
return self.get_invalid_traj_step_return(action, pos_traj, return_contextual_obs)
return_contextual_obs: bool, tau_bound:list, delay_bound:list) -> Tuple[np.ndarray, float, bool, dict]:
return self.get_invalid_traj_step_return(action, pos_traj, return_contextual_obs, tau_bound, delay_bound)
class TTVelObs_MPWrapper(TT_MPWrapper):

View File

@ -5,7 +5,7 @@ from gym import utils, spaces
from gym.envs.mujoco import MujocoEnv
from fancy_gym.envs.mujoco.table_tennis.table_tennis_utils import is_init_state_valid, magnus_force
from fancy_gym.envs.mujoco.table_tennis.table_tennis_utils import jnt_pos_low, jnt_pos_high, delay_bound, tau_bound
from fancy_gym.envs.mujoco.table_tennis.table_tennis_utils import jnt_pos_low, jnt_pos_high
import mujoco
@ -225,7 +225,7 @@ class TableTennisEnv(MujocoEnv, utils.EzPickle):
init_ball_state = self._generate_random_ball(random_pos=random_pos, random_vel=random_vel)
return init_ball_state
def _get_traj_invalid_penalty(self, action, pos_traj):
def _get_traj_invalid_penalty(self, action, pos_traj, tau_bound, delay_bound):
tau_invalid_penalty = 3 * (np.max([0, action[0] - tau_bound[1]]) + np.max([0, tau_bound[0] - action[0]]))
delay_invalid_penalty = 3 * (np.max([0, action[1] - delay_bound[1]]) + np.max([0, delay_bound[0] - action[1]]))
violate_high_bound_error = np.mean(np.maximum(pos_traj - jnt_pos_high, 0))
@ -234,9 +234,9 @@ class TableTennisEnv(MujocoEnv, utils.EzPickle):
violate_high_bound_error + violate_low_bound_error
return -invalid_penalty
def get_invalid_traj_step_return(self, action, pos_traj, contextual_obs):
def get_invalid_traj_step_return(self, action, pos_traj, contextual_obs, tau_bound, delay_bound):
obs = self._get_obs() if contextual_obs else np.concatenate([self._get_obs(), np.array([0])]) # 0 for invalid traj
penalty = self._get_traj_invalid_penalty(action, pos_traj)
penalty = self._get_traj_invalid_penalty(action, pos_traj, tau_bound, delay_bound)
return obs, penalty, True, {
"hit_ball": [False],
"ball_returned_success": [False],
@ -247,7 +247,7 @@ class TableTennisEnv(MujocoEnv, utils.EzPickle):
}
@staticmethod
def check_traj_validity(action, pos_traj, vel_traj):
def check_traj_validity(action, pos_traj, vel_traj, tau_bound, delay_bound):
time_invalid = action[0] > tau_bound[1] or action[0] < tau_bound[0] \
or action[1] > delay_bound[1] or action[1] < delay_bound[0]
if time_invalid or np.any(pos_traj > jnt_pos_high) or np.any(pos_traj < jnt_pos_low):