Merge branch 'master' into 81_fix_docs_mp

This commit is contained in:
Dominik Moritz Roth 2023-11-23 20:52:07 +01:00
commit be320b2d43
78 changed files with 3077 additions and 18 deletions

View File

@ -289,3 +289,25 @@ register(
'goal_switching_step': 99 'goal_switching_step': 99
} }
) )
# Air Hockey environments
for env_mode in ["7dof-hit", "7dof-defend", "3dof-hit", "3dof-defend"]:
register(
id=f'fancy/AirHockey-{env_mode}-v0',
entry_point='fancy_gym.envs.mujoco:AirHockeyEnv',
max_episode_steps=500,
add_mp_types=[],
kwargs={
'env_mode': env_mode
}
)
register(
id=f'fancy/AirHockey-tournament-v0',
entry_point='fancy_gym.envs.mujoco:AirHockeyEnv',
max_episode_steps=15000,
add_mp_types=[],
kwargs={
'env_mode': 'tournament'
}
)

View File

@ -178,9 +178,7 @@ class HoleReacherEnv(BaseReacherDirectEnv):
return False return False
def render(self, mode=None): def render(self):
if mode==None:
mode = self.render_mode
if self.fig is None: if self.fig is None:
# Create base figure once on the beginning. Afterwards only update # Create base figure once on the beginning. Afterwards only update
plt.ion() plt.ion()
@ -199,7 +197,7 @@ class HoleReacherEnv(BaseReacherDirectEnv):
self.fig.gca().set_title( self.fig.gca().set_title(
f"Iteration: {self._steps}, distance: {np.linalg.norm(self.end_effector - self._goal) ** 2}") f"Iteration: {self._steps}, distance: {np.linalg.norm(self.end_effector - self._goal) ** 2}")
if mode == "human": if self.render_mode == "human":
# arm # arm
self.line.set_data(self._joints[:, 0], self._joints[:, 1]) self.line.set_data(self._joints[:, 0], self._joints[:, 1])
@ -207,7 +205,7 @@ class HoleReacherEnv(BaseReacherDirectEnv):
self.fig.canvas.draw() self.fig.canvas.draw()
self.fig.canvas.flush_events() self.fig.canvas.flush_events()
elif mode == "partial": elif self.render_mode == "partial":
if self._steps % 20 == 0 or self._steps in [1, 199] or self._is_collided: if self._steps % 20 == 0 or self._steps in [1, 199] or self._is_collided:
# Arm # Arm
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k', plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k',

View File

@ -98,9 +98,7 @@ class SimpleReacherEnv(BaseReacherTorqueEnv):
def _check_collisions(self) -> bool: def _check_collisions(self) -> bool:
return self._check_self_collision() return self._check_self_collision()
def render(self, mode=None): # pragma: no cover def render(self): # pragma: no cover
if mode==None:
mode = self.render_mode
if self.fig is None: if self.fig is None:
# Create base figure once on the beginning. Afterwards only update # Create base figure once on the beginning. Afterwards only update
plt.ion() plt.ion()

View File

@ -123,9 +123,7 @@ class ViaPointReacherEnv(BaseReacherDirectEnv):
def _check_collisions(self) -> bool: def _check_collisions(self) -> bool:
return self._check_self_collision() return self._check_self_collision()
def render(self, mode=None): def render(self):
if mode==None:
mode = self.render_mode
goal_pos = self._goal.T goal_pos = self._goal.T
via_pos = self._via_point.T via_pos = self._via_point.T
@ -148,7 +146,7 @@ class ViaPointReacherEnv(BaseReacherDirectEnv):
self.fig.gca().set_title(f"Iteration: {self._steps}, distance: {self.end_effector - self._goal}") self.fig.gca().set_title(f"Iteration: {self._steps}, distance: {self.end_effector - self._goal}")
if mode == "human": if self.render_mode == "human":
# goal # goal
if self._steps == 1: if self._steps == 1:
self.goal_point_plot.set_data(goal_pos[0], goal_pos[1]) self.goal_point_plot.set_data(goal_pos[0], goal_pos[1])
@ -160,7 +158,7 @@ class ViaPointReacherEnv(BaseReacherDirectEnv):
self.fig.canvas.draw() self.fig.canvas.draw()
self.fig.canvas.flush_events() self.fig.canvas.flush_events()
elif mode == "partial": elif self.render_mode == "partial":
if self._steps == 1: if self._steps == 1:
# fig, ax = plt.subplots() # fig, ax = plt.subplots()
# Add the patch to the Axes # Add the patch to the Axes
@ -180,7 +178,7 @@ class ViaPointReacherEnv(BaseReacherDirectEnv):
plt.ylim([-1.1, lim]) plt.ylim([-1.1, lim])
plt.pause(0.01) plt.pause(0.01)
elif mode == "final": elif self.render_mode == "final":
if self._steps == 199 or self._is_collided: if self._steps == 199 or self._is_collided:
# fig, ax = plt.subplots() # fig, ax = plt.subplots()

View File

@ -9,3 +9,8 @@ from .reacher.reacher import ReacherEnv
from .walker_2d_jump.walker_2d_jump import Walker2dJumpEnv from .walker_2d_jump.walker_2d_jump import Walker2dJumpEnv
from .box_pushing.box_pushing_env import BoxPushingDense, BoxPushingTemporalSparse, BoxPushingTemporalSpatialSparse from .box_pushing.box_pushing_env import BoxPushingDense, BoxPushingTemporalSparse, BoxPushingTemporalSpatialSparse
from .table_tennis.table_tennis_env import TableTennisEnv, TableTennisWind, TableTennisGoalSwitching from .table_tennis.table_tennis_env import TableTennisEnv, TableTennisWind, TableTennisGoalSwitching
try:
from .air_hockey.air_hockey_env_wrapper import AirHockeyEnv
except ModuleNotFoundError:
print("[FANCY GYM] Air Hockey not available (depends on mushroom-rl, dmc, mujoco)")

View File

@ -0,0 +1,26 @@
MIT License
Copyright (c) 2022 Puze Liu, Jonas Guenster, Davide Tateo.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS," WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
---
This project is a derivative of [AirHockeyChallenge](https://github.com/AirHockeyChallenge/air_hockey_challenge).
The changes are mostly focused on adapting the provided environments to fancy_gym.

View File

@ -0,0 +1,180 @@
from copy import deepcopy
import numpy as np
from gymnasium import spaces
import fancy_gym.envs.mujoco.air_hockey.constraints as constraints
from fancy_gym.envs.mujoco.air_hockey import position_control_wrapper as position
from fancy_gym.envs.mujoco.air_hockey.utils import robot_to_world
from mushroom_rl.core import Environment
class AirHockeyEnv(Environment):
metadata = {"render_modes": ["human"], "render_fps": 50}
def __init__(self, env_mode=None, interpolation_order=3, render_mode=None, **kwargs):
"""
Environment Constructor
Args:
env [string]:
The string to specify the running environments. Available environments: [3dof-hit, 3dof-defend, 7dof-hit, 7dof-defend, tournament].
interpolation_order (int, 3): Type of interpolation used, has to correspond to action shape. Order 1-5 are
polynomial interpolation of the degree. Order -1 is linear interpolation of position and velocity.
Set Order to None in order to turn off interpolation. In this case the action has to be a trajectory
of position, velocity and acceleration of the shape (20, 3, n_joints)
"""
env_dict = {
"tournament": position.IiwaPositionTournament,
"7dof-hit": position.IiwaPositionHit,
"7dof-defend": position.IiwaPositionDefend,
"3dof-hit": position.PlanarPositionHit,
"3dof-defend": position.PlanarPositionDefend
}
if env_mode not in env_dict:
raise Exception(f"Please specify one of the environments in {list(env_dict.keys())} for env_mode parameter!")
if env_mode == "tournament" and type(interpolation_order) != tuple:
interpolation_order = (interpolation_order, interpolation_order)
self.base_env = env_dict[env_mode](interpolation_order=interpolation_order, **kwargs)
self.env_name = env_mode
self.env_info = self.base_env.env_info
single_robot_obs_size = len(self.base_env.info.observation_space.low)
if env_mode == "tournament":
self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape=(2,single_robot_obs_size), dtype=np.float64)
else:
self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape=(single_robot_obs_size,), dtype=np.float64)
robot_info = self.env_info["robot"]
if env_mode != "tournament":
if interpolation_order in [1, 2]:
self.action_space = spaces.Box(low=robot_info["joint_pos_limit"][0], high=robot_info["joint_pos_limit"][1])
if interpolation_order in [3, 4, -1]:
self.action_space = spaces.Box(low=np.vstack([robot_info["joint_pos_limit"][0], robot_info["joint_vel_limit"][0]]),
high=np.vstack([robot_info["joint_pos_limit"][1], robot_info["joint_vel_limit"][1]]))
if interpolation_order in [5]:
self.action_space = spaces.Box(low=np.vstack([robot_info["joint_pos_limit"][0], robot_info["joint_vel_limit"][0], robot_info["joint_acc_limit"][0]]),
high=np.vstack([robot_info["joint_pos_limit"][1], robot_info["joint_vel_limit"][1], robot_info["joint_acc_limit"][1]]))
else:
acts = [None, None]
for i in range(2):
if interpolation_order[i] in [1, 2]:
acts[i] = spaces.Box(low=robot_info["joint_pos_limit"][0], high=robot_info["joint_pos_limit"][1])
if interpolation_order[i] in [3, 4, -1]:
acts[i] = spaces.Box(low=np.vstack([robot_info["joint_pos_limit"][0], robot_info["joint_vel_limit"][0]]),
high=np.vstack([robot_info["joint_pos_limit"][1], robot_info["joint_vel_limit"][1]]))
if interpolation_order[i] in [5]:
acts[i] = spaces.Box(low=np.vstack([robot_info["joint_pos_limit"][0], robot_info["joint_vel_limit"][0], robot_info["joint_acc_limit"][0]]),
high=np.vstack([robot_info["joint_pos_limit"][1], robot_info["joint_vel_limit"][1], robot_info["joint_acc_limit"][1]]))
self.action_space = spaces.Tuple((acts[0], acts[1]))
constraint_list = constraints.ConstraintList()
constraint_list.add(constraints.JointPositionConstraint(self.env_info))
constraint_list.add(constraints.JointVelocityConstraint(self.env_info))
constraint_list.add(constraints.EndEffectorConstraint(self.env_info))
if "7dof" in self.env_name or self.env_name == "tournament":
constraint_list.add(constraints.LinkConstraint(self.env_info))
self.env_info['constraints'] = constraint_list
self.env_info['env_name'] = self.env_name
self.render_mode = render_mode
self.render_human_active = False
super().__init__(self.base_env.info)
def step(self, action):
obs, reward, done, info = self.base_env.step(action)
if "tournament" in self.env_name:
info["constraints_value"] = list()
info["jerk"] = list()
for i in range(2):
obs_agent = obs[i * int(len(obs) / 2): (i + 1) * int(len(obs) / 2)]
info["constraints_value"].append(deepcopy(self.env_info['constraints'].fun(
obs_agent[self.env_info['joint_pos_ids']], obs_agent[self.env_info['joint_vel_ids']])))
info["jerk"].append(
self.base_env.jerk[i * self.env_info['robot']['n_joints']:(i + 1) * self.env_info['robot'][
'n_joints']])
info["score"] = self.base_env.score
info["faults"] = self.base_env.faults
else:
info["constraints_value"] = deepcopy(self.env_info['constraints'].fun(obs[self.env_info['joint_pos_ids']],
obs[self.env_info['joint_vel_ids']]))
info["jerk"] = self.base_env.jerk
info["success"] = self.check_success(obs)
if self.env_info['env_name'] == "tournament":
obs = np.array(np.split(obs, 2))
if self.render_human_active:
self.base_env.render()
return obs, reward, done, False, info
def render(self):
self.render_human_active = True
def reset(self, seed=None, options={}):
self.base_env.seed(seed)
obs = self.base_env.reset()
if self.env_info['env_name'] == "tournament":
obs = np.array(np.split(obs, 2))
return obs, {}
def check_success(self, obs):
puck_pos, puck_vel = self.base_env.get_puck(obs)
puck_pos, _ = robot_to_world(self.base_env.env_info["robot"]["base_frame"][0], translation=puck_pos)
success = 0
if "hit" in self.env_name:
if puck_pos[0] - self.base_env.env_info['table']['length'] / 2 > 0 and \
np.abs(puck_pos[1]) - self.base_env.env_info['table']['goal_width'] / 2 < 0:
success = 1
elif "defend" in self.env_name:
if -0.8 < puck_pos[0] <= -0.2 and puck_vel[0] < 0.1:
success = 1
elif "prepare" in self.env_name:
if -0.8 < puck_pos[0] <= -0.2 and np.abs(puck_pos[1]) < 0.39105 and puck_vel[0] < 0.1:
success = 1
return success
@property
def unwrapped(self):
return self
def close(self):
self.base_env.stop()
if __name__ == "__main__":
env = AirHockeyEnv(env_mode="7dof-hit")
env.reset()
R = 0.
J = 0.
gamma = 1.
steps = 0
while True:
action = np.random.uniform(-1, 1, (2, env.env_info['robot']['n_joints'])) * 3
observation, reward, done, info = env.step(action)
env.render()
gamma *= env.info.gamma
J += gamma * reward
R += reward
steps += 1
if done or steps > env.info.horizon:
print("J: ", J, " R: ", R)
R = 0.
J = 0.
gamma = 1.
steps = 0
env.reset()

View File

@ -0,0 +1 @@
from .constraints import *

View File

@ -0,0 +1,212 @@
import copy
import numpy as np
from fancy_gym.envs.mujoco.air_hockey.utils.kinematics import forward_kinematics, jacobian
class Constraint:
def __init__(self, env_info, output_dim, **kwargs):
"""
Constructor
Args
----
env_info: dict
A dictionary contains information about the environment;
output_dim: int
The output dimension of the constraints.
**kwargs: dict
A dictionary contains agent related information.
"""
self._env_info = env_info
self._name = None
self.output_dim = output_dim
self._fun_value = np.zeros(self.output_dim)
self._jac_value = np.zeros((self.output_dim, 2 * env_info["robot"]["n_joints"]))
self._q_prev = None
self._dq_prev = None
@property
def name(self):
"""
The name of the constraints
"""
return self._name
def fun(self, q, dq):
"""
The function of the constraint.
Args
----
q: numpy.ndarray, (num_joints,)
The joint position of the robot
dq: numpy.ndarray, (num_joints,)
The joint velocity of the robot
Returns
-------
numpy.ndarray, (out_dim,):
The value computed by the constraints function.
"""
if np.equal(q, self._q_prev).all() and np.equal(dq, self._dq_prev):
return self._fun_value
else:
self._jacobian(q, dq)
return self._fun(q, dq)
def jacobian(self, q, dq):
"""
Jacobian is the derivative of the constraint function w.r.t the robot joint position and velocity.
Args
----
q: ndarray, (num_joints,)
The joint position of the robot
dq: ndarray, (num_joints,)
The joint velocity of the robot
Returns
-------
numpy.ndarray, (dim_output, num_joints * 2):
The flattened jacobian of the constraint function J = [dc / dq, dc / dq_dot]
"""
if np.equal(q, self._q_prev).all() and np.equal(dq, self._dq_prev):
return self._fun_value
else:
self._fun(q, dq)
return self._jacobian(q, dq)
def _fun(self, q, dq):
raise NotImplementedError
def _jacobian(self, q, dq):
raise NotImplementedError
class ConstraintList:
def __init__(self):
self.constraints = dict()
def keys(self):
return self.constraints.keys()
def get(self, key):
return self.constraints.get(key)
def add(self, c):
self.constraints.update({c.name: c})
def delete(self, name):
del self.constraints[name]
def fun(self, q, dq):
return {key: self.constraints[key].fun(q, dq) for key in self.constraints}
def jacobian(self, q, dq):
return {key: self.constraints[key].jacobian(q, dq) for key in self.constraints}
class JointPositionConstraint(Constraint):
def __init__(self, env_info, **kwargs):
super().__init__(env_info, output_dim=2 * env_info["robot"]["n_joints"], **kwargs)
self.joint_limits = self._env_info['robot']['joint_pos_limit'] * 0.95
self._name = 'joint_pos_constr'
def _fun(self, q, dq):
self._fun_value[:int(self.output_dim / 2)] = q - self.joint_limits[1]
self._fun_value[int(self.output_dim / 2):] = self.joint_limits[0] - q
return self._fun_value
def _jacobian(self, q, dq):
self._jac_value[:int(self.output_dim / 2), :int(self.output_dim / 2)] = np.eye(
self._env_info['robot']['n_joints'])
self._jac_value[int(self.output_dim / 2):, :int(self.output_dim / 2)] = -np.eye(
self._env_info['robot']['n_joints'])
return self._jac_value
class JointVelocityConstraint(Constraint):
def __init__(self, env_info, **kwargs):
super().__init__(env_info, output_dim=2 * env_info["robot"]["n_joints"], **kwargs)
self.joint_limits = self._env_info['robot']['joint_vel_limit'] * 0.95
self._name = 'joint_vel_constr'
def _fun(self, q, dq):
self._fun_value[:int(self.output_dim / 2)] = dq - self.joint_limits[1]
self._fun_value[int(self.output_dim / 2):] = self.joint_limits[0] - dq
return self._fun_value
def _jacobian(self, q, dq):
self._jac_value[:int(self.output_dim / 2), int(self.output_dim / 2):] = np.eye(
self._env_info['robot']['n_joints'])
self._jac_value[int(self.output_dim / 2):, int(self.output_dim / 2):] = -np.eye(
self._env_info['robot']['n_joints'])
return self._jac_value
class EndEffectorConstraint(Constraint):
def __init__(self, env_info, **kwargs):
# 1 Dimension on x direction: x > x_lb
# 2 Dimension on y direction: y > y_lb, y < y_ub
# 2 Dimension on z direction: z > z_lb, z < z_ub
super().__init__(env_info, output_dim=5, **kwargs)
self._name = "ee_constr"
tolerance = 0.02
self.robot_model = copy.deepcopy(self._env_info['robot']['robot_model'])
self.robot_data = copy.deepcopy(self._env_info['robot']['robot_data'])
self.x_lb = - self._env_info['robot']['base_frame'][0][0, 3] - (
self._env_info['table']['length'] / 2 - self._env_info['mallet']['radius'])
self.y_lb = - (self._env_info['table']['width'] / 2 - self._env_info['mallet']['radius'])
self.y_ub = (self._env_info['table']['width'] / 2 - self._env_info['mallet']['radius'])
self.z_lb = self._env_info['robot']['ee_desired_height'] - tolerance
self.z_ub = self._env_info['robot']['ee_desired_height'] + tolerance
def _fun(self, q, dq):
ee_pos, _ = forward_kinematics(self.robot_model, self.robot_data, q)
self._fun_value = np.array([-ee_pos[0] + self.x_lb,
-ee_pos[1] + self.y_lb, ee_pos[1] - self.y_ub,
-ee_pos[2] + self.z_lb, ee_pos[2] - self.z_ub])
return self._fun_value
def _jacobian(self, q, dq):
jac = jacobian(self.robot_model, self.robot_data, q)
dc_dx = np.array([[-1, 0., 0.], [0., -1., 0.], [0., 1., 0.], [0., 0., -1.], [0., 0., 1.]])
self._jac_value[:, :self._env_info['robot']['n_joints']] = dc_dx @ jac[:3, :self._env_info['robot']['n_joints']]
return self._jac_value
class LinkConstraint(Constraint):
def __init__(self, env_info, **kwargs):
# 1 Dimension: wrist_z > minimum_height
# 2 Dimension: elbow_z > minimum_height
super().__init__(env_info, output_dim=2, **kwargs)
self._name = "link_constr"
self.robot_model = copy.deepcopy(self._env_info['robot']['robot_model'])
self.robot_data = copy.deepcopy(self._env_info['robot']['robot_data'])
self.z_lb = 0.25
def _fun(self, q, dq):
wrist_pos, _ = forward_kinematics(self.robot_model, self.robot_data, q, link="7")
elbow_pos, _ = forward_kinematics(self.robot_model, self.robot_data, q, link="4")
self._fun_value = np.array([-wrist_pos[2] + self.z_lb,
-elbow_pos[2] + self.z_lb])
return self._fun_value
def _jacobian(self, q, dq):
jac_wrist = jacobian(self.robot_model, self.robot_data, q, link="7")
jac_elbow = jacobian(self.robot_model, self.robot_data, q, link="4")
self._jac_value[:, :self._env_info['robot']['n_joints']] = np.vstack([
-jac_wrist[2, :self._env_info['robot']['n_joints']],
-jac_elbow[2, :self._env_info['robot']['n_joints']],
])
return self._jac_value

View File

@ -0,0 +1,58 @@
<mujoco model="AirHockeySingle">
<include file="iiwa1.xml"/>
<include file="iiwa2.xml"/>
<include file="../table.xml"/>
<contact>
<exclude body1="table_surface" body2="iiwa_1/base"/>
<exclude body1="table_surface" body2="iiwa_1/link_1"/>
<exclude body1="table_surface" body2="iiwa_1/link_2"/>
<exclude body1="table_surface" body2="iiwa_1/link_3"/>
<exclude body1="table_surface" body2="iiwa_1/link_4"/>
<exclude body1="table_surface" body2="iiwa_1/link_5"/>
<exclude body1="table_surface" body2="iiwa_1/link_6"/>
<exclude body1="table_surface" body2="iiwa_1/link_7"/>
<exclude body1="table_surface" body2="iiwa_1/striker_joint_link"/>
<exclude body1="table_surface" body2="iiwa_1/striker_mallet"/>
<exclude body1="rim" body2="iiwa_1/base"/>
<exclude body1="rim" body2="iiwa_1/link_1"/>
<exclude body1="rim" body2="iiwa_1/link_2"/>
<exclude body1="rim" body2="iiwa_1/link_3"/>
<exclude body1="rim" body2="iiwa_1/link_4"/>
<exclude body1="rim" body2="iiwa_1/link_5"/>
<exclude body1="rim" body2="iiwa_1/link_6"/>
<exclude body1="rim" body2="iiwa_1/link_7"/>
<exclude body1="rim" body2="iiwa_1/striker_joint_link"/>
<exclude body1="rim" body2="iiwa_1/striker_mallet"/>
<exclude body1="world" body2="iiwa_1/striker_mallet"/>
<exclude body1="table_surface" body2="iiwa_2/base"/>
<exclude body1="table_surface" body2="iiwa_2/link_1"/>
<exclude body1="table_surface" body2="iiwa_2/link_2"/>
<exclude body1="table_surface" body2="iiwa_2/link_3"/>
<exclude body1="table_surface" body2="iiwa_2/link_4"/>
<exclude body1="table_surface" body2="iiwa_2/link_5"/>
<exclude body1="table_surface" body2="iiwa_2/link_6"/>
<exclude body1="table_surface" body2="iiwa_2/link_7"/>
<exclude body1="table_surface" body2="iiwa_2/striker_joint_link"/>
<exclude body1="table_surface" body2="iiwa_2/striker_mallet"/>
<exclude body1="rim" body2="iiwa_2/base"/>
<exclude body1="rim" body2="iiwa_2/link_1"/>
<exclude body1="rim" body2="iiwa_2/link_2"/>
<exclude body1="rim" body2="iiwa_2/link_3"/>
<exclude body1="rim" body2="iiwa_2/link_4"/>
<exclude body1="rim" body2="iiwa_2/link_5"/>
<exclude body1="rim" body2="iiwa_2/link_6"/>
<exclude body1="rim" body2="iiwa_2/link_7"/>
<exclude body1="rim" body2="iiwa_2/striker_joint_link"/>
<exclude body1="rim" body2="iiwa_2/striker_mallet"/>
<exclude body1="world" body2="iiwa_2/striker_mallet"/>
</contact>
</mujoco>

View File

@ -0,0 +1,108 @@
<mujoco model="iiwa_1">
<compiler angle="radian" autolimits="true" meshdir="assets"/>
<default>
<default class="vis">
<geom contype="0" conaffinity="0"/>
</default>
<default class="robot">
<geom condim="4" solref="0.02 0.3" priority="2"/>
</default>
</default>
<asset>
<mesh name="link_0" file="link_0.stl"/>
<mesh name="link_1" file="link_1.stl"/>
<mesh name="link_2" file="link_2.stl"/>
<mesh name="link_3" file="link_3.stl"/>
<mesh name="link_4" file="link_4.stl"/>
<mesh name="link_5" file="link_5.stl"/>
<mesh name="link_6" file="link_6.stl"/>
<mesh name="link_7" file="link_7.stl"/>
<mesh name="EE_arm" file="EE_arm.stl"/>
<mesh name="EE_mallet_foam" file="EE_mallet_foam.stl"/>
</asset>
<worldbody>
<body name="iiwa_1/base" pos="-1.51 0 -0.1">
<geom type="mesh" rgba="0.4 0.4 0.4 1" mesh="link_0" class="vis"/>
<body name="iiwa_1/link_1" pos="0 0 0.1575">
<inertial pos="4.007709e-06 -0.033936 0.122467" mass="8.240527"
fullinertia="0.021981 0.022182 0.008234 -2.897243e-07 6.3165236e-07 0.003285"/>
<joint name="iiwa_1/joint_1" pos="0 0 0" axis="0 0 1" range="-2.96706 2.96706" damping="0.33032"
frictionloss="0.384477"/>
<geom type="mesh" rgba="1 0.423529 0.0392157 1" mesh="link_1" class="vis"/>
<body name="iiwa_1/link_2" pos="0 0 0.2025" quat="0 0 0.707107 0.707107">
<inertial pos="0.003402 0.034792 0.046725" mass="6.357896"
fullinertia="0.015565 0.005180 0.015484 -4.147301e-06 1.192255e-05 0.002538"/>
<joint name="iiwa_1/joint_2" pos="0 0 0" axis="0 0 1" range="-2.0944 2.0944" damping="0.21216"
frictionloss="0.496333"/>
<geom type="mesh" rgba="1 0.423529 0.0392157 1" mesh="link_2" class="vis"/>
<body name="iiwa_1/link_3" pos="0 0.2045 0" quat="0 0 0.707107 0.707107">
<inertial pos="-0.001452 0.031526 0.133584" mass="4.042756"
fullinertia="0.010914 0.010381 0.003139 -3.540575e-06 -9.059062e-06 -0.002128"/>
<joint name="iiwa_1/joint_3" pos="0 0 0" axis="0 0 1" range="-2.96706 2.96706" damping="0.1"
frictionloss="0.173951"/>
<geom type="mesh" rgba="1 0.423529 0.0392157 1" mesh="link_3" class="vis"/>
<body name="iiwa_1/link_4" pos="0 0 0.2155" quat="0.707107 0.707107 0 0">
<inertial pos="-0.002527 0.053508 0.037205" mass="3.642249"
fullinertia="0.007536 0.002538 0.007206 -5.707028e-06 2.781894e-06 0.001256"/>
<joint name="iiwa_1/joint_4" pos="0 0 0" axis="0 0 1" range="-2.0944 2.0944"
damping="0.219041" frictionloss="0.3751"/>
<geom type="mesh" rgba="1 0.423529 0.0392157 1" mesh="link_4" class="vis"/>
<body name="iiwa_1/link_5" pos="0 0.1845 0" quat="0 0 0.707107 0.707107">
<inertial pos="0.001855 0.024573 0.080131" mass="2.580896"
fullinertia="0.005201 0.004488 0.002242 1.089316e-07 9.035623e-07 -0.001613"/>
<joint name="iiwa_1/joint_5" pos="0 0 0" axis="0 0 1" range="-2.96706 2.96706"
damping="0.185923" frictionloss="0.481099"/>
<geom type="mesh" rgba="1 0.423529 0.0392157 1" mesh="link_5" class="vis"/>
<body name="iiwa_1/link_6" pos="0 0 0.2155" quat="0.707107 0.707107 0 0">
<inertial pos="-0.001739 -0.001973 -0.002502" mass="2.760564"
fullinertia="0.002534 0.001821 0.002393 -1.311766e-06 9.508242e-07 0.000134"/>
<joint name="iiwa_1/joint_6" pos="0 0 0" axis="0 0 1" range="-2.0944 2.0944"
damping="0.1" frictionloss="0.196149"/>
<geom type="mesh" rgba="1 0.423529 0.0392157 1" mesh="link_6" class="vis"/>
<body name="iiwa_1/link_7" pos="0 0.081 0" quat="0 0 0.707107 0.707107">
<inertial pos="0.000735 0.000387 0.026460" mass="1.285417"
fullinertia="0.000151 0.000150 0.000187 -7.223100e-08 2.038333e-06 -3.396830e-07"/>
<joint name="iiwa_1/joint_7" pos="0 0 0" axis="0 0 1" range="-3.05433 3.05433"
damping="0.1" frictionloss="0.299238" armature="0.01"/>
<geom type="mesh" rgba="0.4 0.4 0.4 1" mesh="link_7" class="vis"/>
<geom pos="0 0 0.07" type="mesh" rgba="0.3 0.3 0.3 1" mesh="EE_arm"
class="vis"/>
<body name="iiwa_1/striker_joint_link" pos="0 0 0.585">
<inertial pos="0 0 0" mass="0.1" diaginertia="0.001 0.001 0.001"/>
<body name="iiwa_1/striker_mallet" pos="0 0 0">
<inertial pos="0 0 0.0682827" mass="0.283"
diaginertia="0.005 0.005 0.005"/>
<joint name="iiwa_1/striker_joint_1" pos="0 0 0" axis="0 1 0"
range="-1.5708 1.5708" damping="0.0"/>
<joint name="iiwa_1/striker_joint_2" pos="0 0 0" axis="1 0 0"
range="-1.5708 1.5708" damping="0.0"/>
<geom type="mesh" rgba="0.3 0.3 0.3 1" mesh="EE_mallet_foam"
class="vis"/>
<geom name="iiwa_1/ee" type="cylinder" rgba="0.3 0.3 0.3 0.1"
size="0.04815 0.03" pos="0 0 0.0505" friction="0 0 0"/>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</worldbody>
<actuator>
<motor name="iiwa_1/joint_1" joint="iiwa_1/joint_1" ctrlrange="-320 320"/>
<motor name="iiwa_1/joint_2" joint="iiwa_1/joint_2" ctrlrange="-320 320"/>
<motor name="iiwa_1/joint_3" joint="iiwa_1/joint_3" ctrlrange="-176 176"/>
<motor name="iiwa_1/joint_4" joint="iiwa_1/joint_4" ctrlrange="-176 176"/>
<motor name="iiwa_1/joint_5" joint="iiwa_1/joint_5" ctrlrange="-110 110"/>
<motor name="iiwa_1/joint_6" joint="iiwa_1/joint_6" ctrlrange="-40 40"/>
<motor name="iiwa_1/joint_7" joint="iiwa_1/joint_7" ctrlrange="-40 40"/>
<motor name="iiwa_1/striker_joint_1" joint="iiwa_1/striker_joint_1" ctrlrange="-10 10"/>
<motor name="iiwa_1/striker_joint_2" joint="iiwa_1/striker_joint_2" ctrlrange="-10 10"/>
</actuator>
</mujoco>

View File

@ -0,0 +1,89 @@
<mujoco model="iiwa_2">
<compiler angle="radian" autolimits="true" meshdir="assets"/>
<worldbody>
<body name="iiwa_2/base" pos="1.51 0 -0.1" quat="0 0 0 1">
<geom type="mesh" rgba="0.4 0.4 0.4 1" mesh="link_0" class="vis"/>
<body name="iiwa_2/link_1" pos="0 0 0.1575">
<inertial pos="4.007709e-06 -0.033936 0.122467" mass="8.240527"
fullinertia="0.021981 0.022182 0.008234 -2.897243e-07 6.3165236e-07 0.003285"/>
<joint name="iiwa_2/joint_1" pos="0 0 0" axis="0 0 1" range="-2.96706 2.96706" damping="0.33032"
frictionloss="0.384477"/>
<geom type="mesh" rgba="1 0.423529 0.0392157 1" mesh="link_1" class="vis"/>
<body name="iiwa_2/link_2" pos="0 0 0.2025" quat="0 0 0.707107 0.707107">
<inertial pos="0.003402 0.034792 0.046725" mass="6.357896"
fullinertia="0.015565 0.005180 0.015484 -4.147301e-06 1.192255e-05 0.002538"/>
<joint name="iiwa_2/joint_2" pos="0 0 0" axis="0 0 1" range="-2.0944 2.0944" damping="0.21216"
frictionloss="0.496333"/>
<geom type="mesh" rgba="1 0.423529 0.0392157 1" mesh="link_2" class="vis"/>
<body name="iiwa_2/link_3" pos="0 0.2045 0" quat="0 0 0.707107 0.707107">
<inertial pos="-0.001452 0.031526 0.133584" mass="4.042756"
fullinertia="0.010914 0.010381 0.003139 -3.540575e-06 -9.059062e-06 -0.002128"/>
<joint name="iiwa_2/joint_3" pos="0 0 0" axis="0 0 1" range="-2.96706 2.96706" damping="0.1"
frictionloss="0.173951"/>
<geom type="mesh" rgba="1 0.423529 0.0392157 1" mesh="link_3" class="vis"/>
<body name="iiwa_2/link_4" pos="0 0 0.2155" quat="0.707107 0.707107 0 0">
<inertial pos="-0.002527 0.053508 0.037205" mass="3.642249"
fullinertia="0.007536 0.002538 0.007206 -5.707028e-06 2.781894e-06 0.001256"/>
<joint name="iiwa_2/joint_4" pos="0 0 0" axis="0 0 1" range="-2.0944 2.0944"
damping="0.219041" frictionloss="0.3751"/>
<geom type="mesh" rgba="1 0.423529 0.0392157 1" mesh="link_4" class="vis"/>
<body name="iiwa_2/link_5" pos="0 0.1845 0" quat="0 0 0.707107 0.707107">
<inertial pos="0.001855 0.024573 0.080131" mass="2.580896"
fullinertia="0.005201 0.004488 0.002242 1.089316e-07 9.035623e-07 -0.001613"/>
<joint name="iiwa_2/joint_5" pos="0 0 0" axis="0 0 1" range="-2.96706 2.96706"
damping="0.185923" frictionloss="0.481099"/>
<geom type="mesh" rgba="1 0.423529 0.0392157 1" mesh="link_5" class="vis"/>
<body name="iiwa_2/link_6" pos="0 0 0.2155" quat="0.707107 0.707107 0 0">
<inertial pos="-0.001739 -0.001973 -0.002502" mass="2.760564"
fullinertia="0.002534 0.001821 0.002393 -1.311766e-06 9.508242e-07 0.000134"/>
<joint name="iiwa_2/joint_6" pos="0 0 0" axis="0 0 1" range="-2.0944 2.0944"
damping="0.1" frictionloss="0.196149"/>
<geom type="mesh" rgba="1 0.423529 0.0392157 1" mesh="link_6" class="vis"/>
<body name="iiwa_2/link_7" pos="0 0.081 0" quat="0 0 0.707107 0.707107">
<inertial pos="0.000735 0.000387 0.026460" mass="1.285417"
fullinertia="0.000151 0.000150 0.000187 -7.223100e-08 2.038333e-06 -3.396830e-07"/>
<joint name="iiwa_2/joint_7" pos="0 0 0" axis="0 0 1" range="-3.05433 3.05433"
damping="0.1" frictionloss="0.299238" armature="0.01"/>
<geom type="mesh" rgba="0.4 0.4 0.4 1" mesh="link_7" class="vis"/>
<geom pos="0 0 0.07" type="mesh" rgba="0.3 0.3 0.3 1" mesh="EE_arm"
class="vis"/>
<body name="iiwa_2/striker_joint_link" pos="0 0 0.585">
<inertial pos="0 0 0" mass="0.1" diaginertia="0.001 0.001 0.001"/>
<body name="iiwa_2/striker_mallet" pos="0 0 0">
<inertial pos="0 0 0.0682827" mass="0.283"
diaginertia="0.005 0.005 0.005"/>
<joint name="iiwa_2/striker_joint_1" pos="0 0 0" axis="0 1 0"
range="-1.5708 1.5708" damping="0.0"/>
<joint name="iiwa_2/striker_joint_2" pos="0 0 0" axis="1 0 0"
range="-1.5708 1.5708" damping="0.0"/>
<geom type="mesh" rgba="0.3 0.3 0.3 1" mesh="EE_mallet_foam"
class="vis"/>
<geom name="iiwa_2/ee" type="cylinder" rgba="0.3 0.3 0.3 0.1"
size="0.04815 0.03" pos="0 0 0.0505" friction="0 0 0"/>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</worldbody>
<actuator>
<motor name="iiwa_2/joint_1" joint="iiwa_2/joint_1" ctrlrange="-320 320"/>
<motor name="iiwa_2/joint_2" joint="iiwa_2/joint_2" ctrlrange="-320 320"/>
<motor name="iiwa_2/joint_3" joint="iiwa_2/joint_3" ctrlrange="-176 176"/>
<motor name="iiwa_2/joint_4" joint="iiwa_2/joint_4" ctrlrange="-176 176"/>
<motor name="iiwa_2/joint_5" joint="iiwa_2/joint_5" ctrlrange="-110 110"/>
<motor name="iiwa_2/joint_6" joint="iiwa_2/joint_6" ctrlrange="-40 40"/>
<motor name="iiwa_2/joint_7" joint="iiwa_2/joint_7" ctrlrange="-40 40"/>
<motor name="iiwa_2/striker_joint_1" joint="iiwa_2/striker_joint_1" ctrlrange="-10 10"/>
<motor name="iiwa_2/striker_joint_2" joint="iiwa_2/striker_joint_2" ctrlrange="-10 10"/>
</actuator>
</mujoco>

View File

@ -0,0 +1,94 @@
<mujoco model="iiwa_1">
<compiler angle="radian" autolimits="true" meshdir="assets"/>
<default>
<default class="vis">
<geom contype="0" conaffinity="0"/>
</default>
<default class="robot">
<geom condim="4" solref="0.02 0.3" priority="2"/>
</default>
</default>
<asset>
<mesh name="link_0" file="link_0.stl"/>
<mesh name="link_1" file="link_1.stl"/>
<mesh name="link_2" file="link_2.stl"/>
<mesh name="link_3" file="link_3.stl"/>
<mesh name="link_4" file="link_4.stl"/>
<mesh name="link_5" file="link_5.stl"/>
<mesh name="link_6" file="link_6.stl"/>
<mesh name="link_7" file="link_7.stl"/>
<mesh name="EE_arm" file="EE_arm.stl"/>
<mesh name="EE_mallet_foam" file="EE_mallet_foam.stl"/>
</asset>
<worldbody>
<body name="iiwa_1/base" pos="0.0 0 0.0">
<geom type="mesh" rgba="0.4 0.4 0.4 1" mesh="link_0" class="vis"/>
<body name="iiwa_1/link_1" pos="0 0 0.1575">
<inertial pos="4.007709e-06 -0.033936 0.122467" mass="8.240527"
fullinertia="0.021981 0.022182 0.008234 -2.897243e-07 6.3165236e-07 0.003285"/>
<joint name="iiwa_1/joint_1" pos="0 0 0" axis="0 0 1" range="-2.96706 2.96706" damping="0.33032"
frictionloss="0.384477"/>
<geom type="mesh" rgba="1 0.423529 0.0392157 1" mesh="link_1" class="vis"/>
<body name="iiwa_1/link_2" pos="0 0 0.2025" quat="0 0 0.707107 0.707107">
<inertial pos="0.003402 0.034792 0.046725" mass="6.357896"
fullinertia="0.015565 0.005180 0.015484 -4.147301e-06 1.192255e-05 0.002538"/>
<joint name="iiwa_1/joint_2" pos="0 0 0" axis="0 0 1" range="-2.0944 2.0944" damping="0.21216"
frictionloss="0.496333"/>
<geom type="mesh" rgba="1 0.423529 0.0392157 1" mesh="link_2" class="vis"/>
<body name="iiwa_1/link_3" pos="0 0.2045 0" quat="0 0 0.707107 0.707107">
<inertial pos="-0.001452 0.031526 0.133584" mass="4.042756"
fullinertia="0.010914 0.010381 0.003139 -3.540575e-06 -9.059062e-06 -0.002128"/>
<joint name="iiwa_1/joint_3" pos="0 0 0" axis="0 0 1" range="-2.96706 2.96706" damping="0.1"
frictionloss="0.173951"/>
<geom type="mesh" rgba="1 0.423529 0.0392157 1" mesh="link_3" class="vis"/>
<body name="iiwa_1/link_4" pos="0 0 0.2155" quat="0.707107 0.707107 0 0">
<inertial pos="-0.002527 0.053508 0.037205" mass="3.642249"
fullinertia="0.007536 0.002538 0.007206 -5.707028e-06 2.781894e-06 0.001256"/>
<joint name="iiwa_1/joint_4" pos="0 0 0" axis="0 0 1" range="-2.0944 2.0944"
damping="0.219041" frictionloss="0.3751"/>
<geom type="mesh" rgba="1 0.423529 0.0392157 1" mesh="link_4" class="vis"/>
<body name="iiwa_1/link_5" pos="0 0.1845 0" quat="0 0 0.707107 0.707107">
<inertial pos="0.001855 0.024573 0.080131" mass="2.580896"
fullinertia="0.005201 0.004488 0.002242 1.089316e-07 9.035623e-07 -0.001613"/>
<joint name="iiwa_1/joint_5" pos="0 0 0" axis="0 0 1" range="-2.96706 2.96706"
damping="0.185923" frictionloss="0.481099"/>
<geom type="mesh" rgba="1 0.423529 0.0392157 1" mesh="link_5" class="vis"/>
<body name="iiwa_1/link_6" pos="0 0 0.2155" quat="0.707107 0.707107 0 0">
<inertial pos="-0.001739 -0.001973 -0.002502" mass="2.760564"
fullinertia="0.002534 0.001821 0.002393 -1.311766e-06 9.508242e-07 0.000134"/>
<joint name="iiwa_1/joint_6" pos="0 0 0" axis="0 0 1" range="-2.0944 2.0944"
damping="0.1" frictionloss="0.196149"/>
<geom type="mesh" rgba="1 0.423529 0.0392157 1" mesh="link_6" class="vis"/>
<body name="iiwa_1/link_7" pos="0 0.081 0" quat="0 0 0.707107 0.707107">
<inertial pos="0.000735 0.000387 0.026460" mass="1.285417"
fullinertia="0.000151 0.000150 0.000187 -7.223100e-08 2.038333e-06 -3.396830e-07"/>
<joint name="iiwa_1/joint_7" pos="0 0 0" axis="0 0 1" range="-3.05433 3.05433"
damping="0.1" frictionloss="0.299238" armature="0.01"/>
<geom type="mesh" rgba="0.4 0.4 0.4 1" mesh="link_7" class="vis"/>
<geom pos="0 0 0.07" type="mesh" rgba="0.3 0.3 0.3 1" mesh="EE_arm"
class="vis"/>
<body name="iiwa_1/striker_joint_link" pos="0 0 0.585">
<inertial pos="0 0 0" mass="0.1" diaginertia="0.001 0.001 0.001"/>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</worldbody>
<actuator>
<motor name="iiwa_1/joint_1" joint="iiwa_1/joint_1" ctrlrange="-320 320"/>
<motor name="iiwa_1/joint_2" joint="iiwa_1/joint_2" ctrlrange="-320 320"/>
<motor name="iiwa_1/joint_3" joint="iiwa_1/joint_3" ctrlrange="-176 176"/>
<motor name="iiwa_1/joint_4" joint="iiwa_1/joint_4" ctrlrange="-176 176"/>
<motor name="iiwa_1/joint_5" joint="iiwa_1/joint_5" ctrlrange="-110 110"/>
<motor name="iiwa_1/joint_6" joint="iiwa_1/joint_6" ctrlrange="-40 40"/>
<motor name="iiwa_1/joint_7" joint="iiwa_1/joint_7" ctrlrange="-40 40"/>
</actuator>
</mujoco>

View File

@ -0,0 +1,32 @@
<mujoco model="AirHockeySingle">
<include file="iiwa1.xml"/>
<include file="../table.xml"/>
<contact>
<exclude body1="table_surface" body2="iiwa_1/base"/>
<exclude body1="table_surface" body2="iiwa_1/link_1"/>
<exclude body1="table_surface" body2="iiwa_1/link_2"/>
<exclude body1="table_surface" body2="iiwa_1/link_3"/>
<exclude body1="table_surface" body2="iiwa_1/link_4"/>
<exclude body1="table_surface" body2="iiwa_1/link_5"/>
<exclude body1="table_surface" body2="iiwa_1/link_6"/>
<exclude body1="table_surface" body2="iiwa_1/link_7"/>
<exclude body1="table_surface" body2="iiwa_1/striker_joint_link"/>
<exclude body1="table_surface" body2="iiwa_1/striker_mallet"/>
<exclude body1="rim" body2="iiwa_1/base"/>
<exclude body1="rim" body2="iiwa_1/link_1"/>
<exclude body1="rim" body2="iiwa_1/link_2"/>
<exclude body1="rim" body2="iiwa_1/link_3"/>
<exclude body1="rim" body2="iiwa_1/link_4"/>
<exclude body1="rim" body2="iiwa_1/link_5"/>
<exclude body1="rim" body2="iiwa_1/link_6"/>
<exclude body1="rim" body2="iiwa_1/link_7"/>
<exclude body1="rim" body2="iiwa_1/striker_joint_link"/>
<exclude body1="rim" body2="iiwa_1/striker_mallet"/>
<exclude body1="world" body2="iiwa_1/striker_mallet"/>
</contact>
</mujoco>

View File

@ -0,0 +1,37 @@
<mujoco model="AirHockeySingle">
<include file="planar_robot_1.xml"/>
<include file="planar_robot_2.xml"/>
<include file="../table.xml"/>
<contact>
<exclude body1="planar_robot_1/body_ee" body2="table_surface"/>
<exclude body1="planar_robot_1/body_hand" body2="table_surface"/>
<exclude body1="planar_robot_1/body_3" body2="table_surface"/>
<exclude body1="planar_robot_1/body_2" body2="table_surface"/>
<exclude body1="planar_robot_1/body_1" body2="table_surface"/>
<exclude body1="planar_robot_1/base" body2="table_surface"/>
<exclude body1="planar_robot_1/body_ee" body2="rim"/>
<exclude body1="planar_robot_1/body_hand" body2="rim"/>
<exclude body1="planar_robot_1/body_3" body2="rim"/>
<exclude body1="planar_robot_1/body_2" body2="rim"/>
<exclude body1="planar_robot_1/body_1" body2="rim"/>
<exclude body1="planar_robot_1/base" body2="rim"/>
<exclude body1="planar_robot_2/body_ee" body2="table_surface"/>
<exclude body1="planar_robot_2/body_hand" body2="table_surface"/>
<exclude body1="planar_robot_2/body_3" body2="table_surface"/>
<exclude body1="planar_robot_2/body_2" body2="table_surface"/>
<exclude body1="planar_robot_2/body_1" body2="table_surface"/>
<exclude body1="planar_robot_2/base" body2="table_surface"/>
<exclude body1="planar_robot_2/body_ee" body2="rim"/>
<exclude body1="planar_robot_2/body_hand" body2="rim"/>
<exclude body1="planar_robot_2/body_3" body2="rim"/>
<exclude body1="planar_robot_2/body_2" body2="rim"/>
<exclude body1="planar_robot_2/body_1" body2="rim"/>
<exclude body1="planar_robot_2/base" body2="rim"/>
</contact>
</mujoco>

View File

@ -0,0 +1,61 @@
<mujoco model="planar_robot_1">
<compiler autolimits="true" angle="radian"/>
<asset>
<material name="dark_red" rgba="0.58 0.03 0.25 1"/>
<material name="black" rgba="0.1 0.1 0.11 1"/>
</asset>
<default>
<default class="visual">
<geom contype="0" conaffinity="0"/>
</default>
<default class="robot">
<geom condim="4" solref="0.02 0.3" priority="2"/>
</default>
</default>
<worldbody>
<body name="planar_robot_1/base" pos="-1.51 0 -0.1">
<geom type="cylinder" material="black" size="0.075 0.2" pos="0 0 0.2" class="visual"/>
<inertial pos="0 0 0" mass="1" diaginertia="0.05 0.018 0.044"/>
<body name="planar_robot_1/body_1" pos="0 0 0.25">
<joint name="planar_robot_1/joint_1" axis="0 0 1" range="-2.9670597283903604 2.9670597283903604"/>
<inertial pos="0.25 0 0" mass="3" diaginertia="0.064375 0.064375 0.00375"/>
<geom class="robot" type="cylinder" material="dark_red" size="0.04 0.275" euler="0 1.57079632679 0"
pos="0.275 0 0"/>
<body name="planar_robot_1/body_2" pos="0.55 0 0">
<joint name="planar_robot_1/joint_2" axis="0 0 1" range="-1.8 1.8"/>
<inertial pos="0.2 0 0" mass="2" diaginertia="0.0335 0.0335 0.003"/>
<geom class="robot" type="cylinder" material="dark_red" size="0.04 0.22" euler="0 1.57079632679 0"
pos="0.22 0 0"/>
<geom class="robot" type="sphere" material="dark_red" size="0.05"/>
<body name="planar_robot_1/body_3" pos="0.44 0 0">
<joint name="planar_robot_1/joint_3" axis="0 0 1"
range="-2.0943951023931953 2.0943951023931953"/>
<inertial pos="0.2 0 0" mass="2" diaginertia="0.0335 0.0335 0.003"/>
<geom class="robot" type="cylinder" material="dark_red" size="0.04 0.22"
euler="0 1.57079632679 0" pos="0.22 0 0"/>
<geom class="robot" type="sphere" material="dark_red" size="0.05"/>
<body name="planar_robot_1/body_hand" pos="0.44 0 0">
<inertial pos="0 0 0" mass="0.1" diaginertia="0.0008 0.0023 0.0023"/>
<geom class="robot" type="sphere" material="dark_red" size="0.05"/>
<geom class="robot" type="cylinder" material="black" size="0.01 0.075" pos="0 0 -0.075"/>
<body name="planar_robot_1/body_ee" pos="0 0 -0.15">
<inertial pos="0 0 0" mass="0.1" diaginertia="0.0008 0.0023 0.0023"/>
<geom class="robot" name="planar_robot_1/ee" type="cylinder" material="black"
size="0.04815 0.01" pos="0 0 0.01" friction="0 0 0"/>
</body>
</body>
</body>
</body>
</body>
</body>
</worldbody>
<actuator>
<motor name="planar_robot_1/joint_1" joint="planar_robot_1/joint_1" ctrlrange="-100 100"/>
<motor name="planar_robot_1/joint_2" joint="planar_robot_1/joint_2" ctrlrange="-50 50"/>
<motor name="planar_robot_1/joint_3" joint="planar_robot_1/joint_3" ctrlrange="-30 30"/>
</actuator>
</mujoco>

View File

@ -0,0 +1,46 @@
<mujoco model="planar_robot_2">
<compiler autolimits="true" angle="radian"/>
<worldbody>
<body name="planar_robot_2/base" pos="1.51 0 -0.1" quat="0 0 0 1">
<geom type="cylinder" material="black" size="0.075 0.2" pos="0 0 0.2" class="visual"/>
<inertial pos="0 0 0" mass="1" diaginertia="0.05 0.018 0.044"/>
<body name="planar_robot_2/body_1" pos="0 0 0.25">
<joint name="planar_robot_2/joint_1" axis="0 0 1" range="-2.9670597283903604 2.9670597283903604"/>
<inertial pos="0.25 0 0" mass="3" diaginertia="0.064375 0.064375 0.00375"/>
<geom type="cylinder" material="dark_red" size="0.04 0.275" euler="0 1.57079632679 0" pos="0.275 0 0"/>
<body name="planar_robot_2/body_2" pos="0.55 0 0">
<joint name="planar_robot_2/joint_2" axis="0 0 1" range="-1.8 1.8"/>
<inertial pos="0.2 0 0" mass="2" diaginertia="0.0335 0.0335 0.003"/>
<geom type="cylinder" material="dark_red" size="0.04 0.22" euler="0 1.57079632679 0"
pos="0.22 0 0"/>
<geom type="sphere" material="dark_red" size="0.05"/>
<body name="planar_robot_2/body_3" pos="0.44 0 0">
<joint name="planar_robot_2/joint_3" axis="0 0 1"
range="-2.0943951023931953 2.0943951023931953"/>
<inertial pos="0.2 0 0" mass="2" diaginertia="0.0335 0.0335 0.003"/>
<geom type="cylinder" material="dark_red" size="0.04 0.22" euler="0 1.57079632679 0"
pos="0.22 0 0"/>
<geom type="sphere" material="dark_red" size="0.05"/>
<body name="planar_robot_2/body_hand" pos="0.44 0 0">
<inertial pos="0 0 0" mass="0.1" diaginertia="0.0008 0.0023 0.0023"/>
<geom type="sphere" material="dark_red" size="0.05"/>
<geom type="cylinder" material="black" size="0.01 0.075" pos="0 0 -0.075"/>
<body name="planar_robot_2/body_ee" pos="0 0 -0.15">
<inertial pos="0 0 0" mass="0.1" diaginertia="0.0008 0.0023 0.0023"/>
<geom name="planar_robot_2/ee" type="cylinder" material="black" size="0.04815 0.01"
pos="0 0 0.01" friction="0 0 0"/>
</body>
</body>
</body>
</body>
</body>
</body>
</worldbody>
<actuator>
<motor name="planar_robot_2/joint_1" joint="planar_robot_2/joint_1" ctrlrange="-100 100"/>
<motor name="planar_robot_2/joint_2" joint="planar_robot_2/joint_2" ctrlrange="-50 50"/>
<motor name="planar_robot_2/joint_3" joint="planar_robot_2/joint_3" ctrlrange="-30 30"/>
</actuator>
</mujoco>

View File

@ -0,0 +1,24 @@
<mujoco model="AirHockeySingle">
<include file="planar_robot_1.xml"/>
<include file="../table.xml"/>
<contact>
<exclude body1="planar_robot_1/body_ee" body2="table_surface"/>
<exclude body1="planar_robot_1/body_hand" body2="table_surface"/>
<exclude body1="planar_robot_1/body_3" body2="table_surface"/>
<exclude body1="planar_robot_1/body_2" body2="table_surface"/>
<exclude body1="planar_robot_1/body_1" body2="table_surface"/>
<exclude body1="planar_robot_1/base" body2="table_surface"/>
<exclude body1="planar_robot_1/body_ee" body2="rim"/>
<exclude body1="planar_robot_1/body_hand" body2="rim"/>
<exclude body1="planar_robot_1/body_3" body2="rim"/>
<exclude body1="planar_robot_1/body_2" body2="rim"/>
<exclude body1="planar_robot_1/body_1" body2="rim"/>
<exclude body1="planar_robot_1/base" body2="rim"/>
</contact>
</mujoco>

View File

@ -0,0 +1,89 @@
<mujoco model="table">
<option timestep="0.001" cone="elliptic" impratio="1"/>
<asset>
<material name="grey" specular="0.5" shininess="0.25" rgba="0.8 0.8 0.8 1"/>
<material name="white" specular="0.5" shininess="0.25" rgba="1.0 1.0 1.0 1"/>
<material name="red" specular="0.5" shininess="0.25" rgba="1.0 0.0 0.0 1"/>
<material name="blue" specular="0.5" shininess="0.25" rgba="0.0 0.0 1.0 1"/>
<material name="transparent" specular="0.5" shininess="0.25" rgba="0.0 0.0 1.0 0"/>
<texture type="skybox" builtin="gradient" rgb1="0.3 0.5 0.7" rgb2="0 0 0" width="512"
height="3072"/>
<texture type="2d" name="groundplane" builtin="checker" mark="edge" rgb1="0.2 0.3 0.4"
rgb2="0.1 0.2 0.3" markrgb="0.8 0.8 0.8" width="300" height="300"/>
<material name="groundplane" texture="groundplane" texuniform="true" texrepeat="5 5"
reflectance="0.2"/>
</asset>
<default>
<geom condim="4" solref="0.02 0.3"/>
<default class="rim">
<geom type="box" material="grey" condim="6" friction="10000 0.0 0.0" priority="1"
solref="-2000000 -250" solimp="0.99 0.999 0.001 0.5 2"/>
</default>
</default>
<worldbody>
<body name="table">
<body name="table_surface">
<geom name="surface" type="box" material="white" size="1.064 0.609 0.0505" pos="0 0 -0.0505"
condim="4" friction="0.08 0.08 0.0" priority="1"
solref="0.0125 0.5" solimp="0.9 0.999 0.001 0.5 2"/>
</body>
<body name="rim">
<!-- <geom name="rim_home_l" class="rim" size="0.045 0.197 0.005" pos="-1.019 0.322 0.005"/>-->
<!-- <geom name="rim_home_r" class="rim" size="0.045 0.197 0.005" pos="-1.019 -0.322 0.005"/>-->
<geom name="rim_home_l" class="rim" size="0.045 0.1945 0.005" pos="-1.019 0.3245 0.005"/>
<geom name="rim_home_r" class="rim" size="0.045 0.1945 0.005" pos="-1.019 -0.3245 0.005"/>
<geom name="rim_home_bound_l" class="rim" type="cylinder" size="0.005 0.005" pos="-0.979 0.13 0.005"/>
<geom name="rim_home_bound_l_tail" class="rim" size="0.0425 0.005 0.005" pos="-1.0215 0.13 0.005"/>
<geom name="rim_home_bound_r" class="rim" type="cylinder" size="0.005 0.005" pos="-0.979 -0.13 0.005"/>
<geom name="rim_home_bound_r_tail" class="rim" size="0.0425 0.005 0.005" pos="-1.0215 -0.13 0.005"/>
<geom name="rim_home_top" class="rim" size="0.045 0.519 0.01" pos="-1.019 0 0.02"/>
<geom name="rim_left" class="rim" size="1.064 0.045 0.015" pos="0 0.564 0.015"/>
<geom name="rim_right" class="rim" size="1.064 0.045 0.015" pos="0 -0.564 0.015"/>
<!-- <geom name="rim_away_l" class="rim" size="0.045 0.197 0.005" pos="1.019 0.322 0.005"/>-->
<!-- <geom name="rim_away_r" class="rim" size="0.045 0.197 0.005" pos="1.019 -0.322 0.005"/>-->
<geom name="rim_away_l" class="rim" size="0.045 0.1945 0.005" pos="1.019 0.3245 0.005"/>
<geom name="rim_away_r" class="rim" size="0.045 0.1945 0.005" pos="1.019 -0.3245 0.005"/>
<geom name="rim_away_bound_l" class="rim" type="cylinder" size="0.005 0.005" pos="0.979 0.13 0.005"/>
<geom name="rim_away_bound_l_tail" class="rim" size="0.0425 0.005 0.005" pos="1.0215 0.13 0.005"/>
<geom name="rim_away_bound_r" class="rim" type="cylinder" size="0.005 0.005" pos="0.979 -0.13 0.005"/>
<geom name="rim_away_bound_r_tail" class="rim" size="0.0425 0.005 0.005" pos="1.0215 -0.13 0.005"/>
<geom name="rim_away_top" class="rim" size="0.045 0.519 0.01" pos="1.019 0 0.02"/>
</body>
</body>
<body name="base" pos="0 0 0">
<joint name="puck_x" type="slide" axis="1 0 0" damping="0.005" limited="false"/>
<joint name="puck_y" type="slide" axis="0 1 0" damping="0.005" limited="false"/>
<joint name="puck_yaw" type="hinge" axis="0 0 1" damping="2e-6" limited="false"/>
<body name="puck">
<geom pos="0 0 0" name="puck" type="cylinder" material="red" size="0.03165 0.003"
condim="4" priority="0"/>
<geom pos="0.02 0 0" type="cylinder" material="blue" size="0.01 0.0031"
condim="4" contype="0" conaffinity="0"/>
<inertial pos="0 0 0" mass="0.01" diaginertia="2.5e-6 2.5e-6 5e-6"/>
</body>
</body>
<site name="puck_vis" type="ellipsoid" size="0.03165 0.03165 0.004" pos="0 0 -0.05"/>
<site name="puck_vis_rot" type="cylinder" size="0.0045 0.006" rgba="1 0 0 1" pos="0 0 -0.05"/>
</worldbody>
<contact>
<exclude body1="puck" body2="table_surface"/>
</contact>
<worldbody>
<light pos="0 0 3" dir="0 0 -1" directional="true"/>
<geom pos="0 0 -0.1" name="floor" size="0 0 0.05" type="plane" material="groundplane"/>
</worldbody>
</mujoco>

View File

@ -0,0 +1,270 @@
from collections import deque
import mujoco
import numpy as np
import scipy
from fancy_gym.envs.mujoco.air_hockey import seven_dof
from fancy_gym.envs.mujoco.air_hockey import three_dof
class PositionControl:
def __init__(self, p_gain, d_gain, i_gain, interpolation_order=3, debug=False, *args, **kwargs):
"""
Mixin that adds position controller to mujoco environments.
Args:
p_gain (float): Proportional controller gain
d_gain (float): Differential controller gain
i_gain (float): Integral controller gain
interpolation_order (int, 3): Type of interpolation used, has to correspond to action shape. Order 1-5 are
polynomial interpolation of the degree. Order -1 is linear interpolation of position and velocity.
Set Order to None in order to turn off interpolation. In this case the action has to be a trajectory
of position, velocity and acceleration of the shape (20, 3, n_joints)
In the case of 2 agents it is a tuple, which describes the interpolation order for each agent
debug (bool, True): If true it logs the controller performance into controller_record queue. The order of the
entries is desired_pos, current_pos, desired_vel, current_vel, desired_acc, jerk.
"""
self.debug = debug
super(PositionControl, self).__init__(*args, **kwargs)
self.robot_model = self.env_info['robot']['robot_model']
self.robot_data = self.env_info['robot']['robot_data']
self.p_gain = np.array(p_gain * self.n_agents)
self.d_gain = np.array(d_gain * self.n_agents)
self.i_gain = np.array(i_gain * self.n_agents)
self.prev_pos = np.zeros(len(self.actuator_joint_ids))
self.prev_vel = np.zeros(len(self.actuator_joint_ids))
self.prev_acc = np.zeros(len(self.actuator_joint_ids))
self.i_error = np.zeros(len(self.actuator_joint_ids))
self.prev_controller_cmd_pos = np.zeros(len(self.actuator_joint_ids))
self.interp_order = interpolation_order if type(interpolation_order) is tuple else (interpolation_order,)
self._num_env_joints = len(self.actuator_joint_ids)
self.n_robot_joints = self.env_info['robot']["n_joints"]
self.action_shape = [None] * self.n_agents
for i in range(self.n_agents):
if self.interp_order[i] is None:
self.action_shape[i] = (int(self.dt / self._timestep), 3, self.n_robot_joints)
elif self.interp_order[i] in [1, 2]:
self.action_shape[i] = (self.n_robot_joints,)
elif self.interp_order[i] in [3, 4, -1]:
self.action_shape[i] = (2, self.n_robot_joints)
elif self.interp_order[i] == 5:
self.action_shape[i] = (3, self.n_robot_joints)
self.traj = None
self.jerk = np.zeros(self._num_env_joints)
if self.debug:
self.controller_record = deque(maxlen=self.info.horizon * self._n_intermediate_steps)
def _enforce_safety_limits(self, desired_pos, desired_vel):
# ROS safe controller
pos = self.prev_controller_cmd_pos
k = 20
joint_pos_lim = np.tile(self.env_info['robot']['joint_pos_limit'], (1, self.n_agents))
joint_vel_lim = np.tile(self.env_info['robot']['joint_vel_limit'], (1, self.n_agents))
min_vel = np.minimum(np.maximum(-k * (pos - joint_pos_lim[0]), joint_vel_lim[0]), joint_vel_lim[1])
max_vel = np.minimum(np.maximum(-k * (pos - joint_pos_lim[1]), joint_vel_lim[0]), joint_vel_lim[1])
clipped_vel = np.minimum(np.maximum(desired_vel, min_vel), max_vel)
min_pos = pos + min_vel * self._timestep
max_pos = pos + max_vel * self._timestep
clipped_pos = np.minimum(np.maximum(desired_pos, min_pos), max_pos)
self.prev_controller_cmd_pos = clipped_pos.copy()
return clipped_pos, clipped_vel
def _controller(self, desired_pos, desired_vel, desired_acc, current_pos, current_vel):
clipped_pos, clipped_vel = self._enforce_safety_limits(desired_pos, desired_vel)
error = (clipped_pos - current_pos)
self.i_error += self.i_gain * error * self._timestep
torque = self.p_gain * error + self.d_gain * (clipped_vel - current_vel) + self.i_error
# Acceleration FeedForward
tau_ff = np.zeros(self.robot_model.nv)
for i in range(self.n_agents):
robot_joint_ids = np.arange(self.n_robot_joints) + self.n_robot_joints * i
self.robot_data.qpos = current_pos[robot_joint_ids]
self.robot_data.qvel = current_vel[robot_joint_ids]
acc_ff = desired_acc[robot_joint_ids]
mujoco.mj_forward(self.robot_model, self.robot_data)
mujoco.mj_mulM(self.robot_model, self.robot_data, tau_ff, acc_ff)
torque[robot_joint_ids] += tau_ff
# Gravity Compensation and Coriolis and Centrifugal force
torque[robot_joint_ids] += self.robot_data.qfrc_bias
torque[robot_joint_ids] = np.minimum(np.maximum(torque[robot_joint_ids],
self.robot_model.actuator_ctrlrange[:, 0]),
self.robot_model.actuator_ctrlrange[:, 1])
if self.debug:
self.controller_record.append(
np.concatenate([desired_pos, current_pos, desired_vel, current_vel, desired_acc, self.jerk]))
return torque
def _interpolate_trajectory(self, interp_order, action, i=0):
tf = self.dt
prev_pos = self.prev_pos[i*self.n_robot_joints:(i+1)*self.n_robot_joints]
prev_vel = self.prev_vel[i*self.n_robot_joints:(i+1)*self.n_robot_joints]
prev_acc = self.prev_acc[i*self.n_robot_joints:(i+1)*self.n_robot_joints]
if interp_order == 1 and action.ndim == 1:
coef = np.array([[1, 0], [1, tf]])
results = np.vstack([prev_pos, action])
elif interp_order == 2 and action.ndim == 1:
coef = np.array([[1, 0, 0], [1, tf, tf ** 2], [0, 1, 0]])
if np.linalg.norm(action - prev_pos) < 1e-3:
prev_vel = np.zeros_like(prev_vel)
results = np.vstack([prev_pos, action, prev_vel])
elif interp_order == 3 and action.shape[0] == 2:
coef = np.array([[1, 0, 0, 0], [1, tf, tf ** 2, tf ** 3], [0, 1, 0, 0], [0, 1, 2 * tf, 3 * tf ** 2]])
results = np.vstack([prev_pos, action[0], prev_vel, action[1]])
elif interp_order == 4 and action.shape[0] == 2:
coef = np.array([[1, 0, 0, 0, 0], [1, tf, tf ** 2, tf ** 3, tf ** 4],
[0, 1, 0, 0, 0], [0, 1, 2 * tf, 3 * tf ** 2, 4 * tf ** 3],
[0, 0, 2, 0, 0]])
results = np.vstack([prev_pos, action[0], prev_vel, action[1], prev_acc])
elif interp_order == 5 and action.shape[0] == 3:
coef = np.array([[1, 0, 0, 0, 0, 0], [1, tf, tf ** 2, tf ** 3, tf ** 4, tf ** 5],
[0, 1, 0, 0, 0, 0], [0, 1, 2 * tf, 3 * tf ** 2, 4 * tf ** 3, 5 * tf ** 4],
[0, 0, 2, 0, 0, 0], [0, 0, 2, 6 * tf, 12 * tf ** 2, 20 * tf ** 3]])
results = np.vstack([prev_pos, action[0], prev_vel, action[1], prev_acc, action[2]])
elif interp_order == -1:
# Interpolate position and velocity linearly
pass
else:
raise ValueError("Undefined interpolator order or the action dimension does not match!")
if interp_order > 0:
A = scipy.linalg.block_diag(*[coef] * self.n_robot_joints)
y = results.reshape(-2, order='F')
weights = np.linalg.solve(A, y).reshape(self.n_robot_joints, interp_order + 1)
weights_d = np.polynomial.polynomial.polyder(weights, axis=1)
weights_dd = np.polynomial.polynomial.polyder(weights_d, axis=1)
elif interp_order == -1:
weights = np.vstack([prev_pos, (action[0] - prev_pos) / self.dt]).T
weights_d = np.vstack([prev_vel, (action[1] - prev_vel) / self.dt]).T
weights_dd = np.polynomial.polynomial.polyder(weights_d, axis=1)
if interp_order in [3, 4, 5]:
self.jerk[i*self.n_robot_joints:(i+1)*self.n_robot_joints] = np.abs(weights_dd[:, 1]) + np.abs(weights_dd[:, 0] - prev_acc) / self._timestep
else:
self.jerk[i*self.n_robot_joints:(i+1)*self.n_robot_joints] = np.ones_like(prev_acc) * np.inf
self.prev_pos[i*self.n_robot_joints:(i+1)*self.n_robot_joints] = np.polynomial.polynomial.polyval(tf, weights.T)
self.prev_vel[i*self.n_robot_joints:(i+1)*self.n_robot_joints] = np.polynomial.polynomial.polyval(tf, weights_d.T)
self.prev_acc[i*self.n_robot_joints:(i+1)*self.n_robot_joints] = np.polynomial.polynomial.polyval(tf, weights_dd.T)
for t in np.linspace(self._timestep, self.dt, self._n_intermediate_steps):
q = np.polynomial.polynomial.polyval(t, weights.T)
qd = np.polynomial.polynomial.polyval(t, weights_d.T)
qdd = np.polynomial.polynomial.polyval(t, weights_dd.T)
yield q, qd, qdd
def reset(self, obs=None):
obs = super(PositionControl, self).reset(obs)
self.prev_pos = self._data.qpos[self.actuator_joint_ids]
self.prev_vel = self._data.qvel[self.actuator_joint_ids]
self.prev_acc = np.zeros(len(self.actuator_joint_ids))
self.i_error = np.zeros(len(self.actuator_joint_ids))
self.prev_controller_cmd_pos = self._data.qpos[self.actuator_joint_ids]
if self.debug:
self.controller_record = deque(maxlen=self.info.horizon * self._n_intermediate_steps)
return obs
def _step_init(self, obs, action):
super(PositionControl, self)._step_init(obs, action)
if self.n_agents == 1:
self.traj = self._create_traj(self.interp_order[0], action)
else:
def _traj():
traj_1 = self._create_traj(self.interp_order[0], action[0], 0)
traj_2 = self._create_traj(self.interp_order[1], action[1], 1)
for a1, a2 in zip(traj_1, traj_2):
yield np.hstack([a1, a2])
self.traj = _traj()
def _create_traj(self, interp_order, action, i=0):
if interp_order is None:
return iter(action)
return self._interpolate_trajectory(interp_order, action, i)
def _compute_action(self, obs, action):
cur_pos, cur_vel = self.get_joints(obs)
desired_pos, desired_vel, desired_acc = next(self.traj)
return self._controller(desired_pos, desired_vel, desired_acc, cur_pos, cur_vel)
def _preprocess_action(self, action):
action = super(PositionControl, self)._preprocess_action(action)
if self.n_agents == 1:
assert action.shape == self.action_shape[0], f"Unexpected action shape. Expected {self.action_shape[0]} but got" \
f" {action.shape}"
else:
for i in range(self.n_agents):
assert action[i].shape == self.action_shape[i], f"Unexpected action shape. Expected {self.action_shape[i]} but got" \
f" {action[i].shape}"
return action
class PositionControlIIWA(PositionControl):
def __init__(self, *args, **kwargs):
p_gain = [1500., 1500., 1200., 1200., 1000., 1000., 500.]
d_gain = [60, 80, 60, 30, 10, 1, 0.5]
i_gain = [0, 0, 0, 0, 0, 0, 0]
super(PositionControlIIWA, self).__init__(p_gain=p_gain, d_gain=d_gain, i_gain=i_gain, *args, **kwargs)
class PositionControlPlanar(PositionControl):
def __init__(self, *args, **kwargs):
p_gain = [960, 480, 240]
d_gain = [60, 20, 4]
i_gain = [0, 0, 0]
super(PositionControlPlanar, self).__init__(p_gain=p_gain, d_gain=d_gain, i_gain=i_gain, *args, **kwargs)
class PlanarPositionHit(PositionControlPlanar, three_dof.AirHockeyHit):
pass
class PlanarPositionDefend(PositionControlPlanar, three_dof.AirHockeyDefend):
pass
class IiwaPositionHit(PositionControlIIWA, seven_dof.AirHockeyHit):
pass
class IiwaPositionDefend(PositionControlIIWA, seven_dof.AirHockeyDefend):
pass
class IiwaPositionTournament(PositionControlIIWA, seven_dof.AirHockeyTournament):
pass

View File

@ -0,0 +1,4 @@
from .env_base import AirHockeyBase
from .tournament import AirHockeyTournament
from .hit import AirHockeyHit
from .defend import AirHockeyDefend

View File

@ -0,0 +1,75 @@
import numpy as np
from fancy_gym.envs.mujoco.air_hockey.seven_dof.env_single import AirHockeySingle
class AirHockeyDefend(AirHockeySingle):
"""
Class for the air hockey defending task.
The agent should stop the puck at the line x=-0.6.
"""
def __init__(self, gamma=0.99, horizon=500, viewer_params={}):
self.init_velocity_range = (1, 3)
self.start_range = np.array([[0.29, 0.65], [-0.4, 0.4]]) # Table Frame
self.init_ee_range = np.array([[0.60, 1.25], [-0.4, 0.4]]) # Robot Frame
super().__init__(gamma=gamma, horizon=horizon, viewer_params=viewer_params)
def setup(self, obs):
puck_pos = np.random.rand(2) * (self.start_range[:, 1] - self.start_range[:, 0]) + self.start_range[:, 0]
lin_vel = np.random.uniform(self.init_velocity_range[0], self.init_velocity_range[1])
angle = np.random.uniform(-0.5, 0.5)
puck_vel = np.zeros(3)
puck_vel[0] = -np.cos(angle) * lin_vel
puck_vel[1] = np.sin(angle) * lin_vel
puck_vel[2] = np.random.uniform(-10, 10)
self._write_data("puck_x_pos", puck_pos[0])
self._write_data("puck_y_pos", puck_pos[1])
self._write_data("puck_x_vel", puck_vel[0])
self._write_data("puck_y_vel", puck_vel[1])
self._write_data("puck_yaw_vel", puck_vel[2])
super(AirHockeyDefend, self).setup(obs)
def reward(self, state, action, next_state, absorbing):
return 0
def is_absorbing(self, state):
puck_pos, puck_vel = self.get_puck(state)
# If puck is over the middle line and moving towards opponent
if puck_pos[0] > 0 and puck_vel[0] > 0:
return True
if np.linalg.norm(puck_vel[:2]) < 0.1:
return True
return super().is_absorbing(state)
if __name__ == '__main__':
env = AirHockeyDefend()
R = 0.
J = 0.
gamma = 1.
steps = 0
env.reset()
env.render()
while True:
# action = np.random.uniform(-1, 1, env.info.action_space.low.shape) * 8
action = np.zeros(7)
observation, reward, done, info = env.step(action)
env.render()
print(observation)
gamma *= env.info.gamma
J += gamma * reward
R += reward
steps += 1
if done or steps > env.info.horizon:
print("J: ", J, " R: ", R)
R = 0.
J = 0.
gamma = 1.
steps = 0
env.reset()

View File

@ -0,0 +1,258 @@
import os
import mujoco
import numpy as np
from scipy.spatial.transform import Rotation as R
from fancy_gym.envs.mujoco.air_hockey.data.iiwas import __file__ as env_path
from fancy_gym.envs.mujoco.air_hockey.utils.universal_joint_plugin import UniversalJointPlugin
from mushroom_rl.environments.mujoco import MuJoCo, ObservationType
from mushroom_rl.utils.spaces import Box
"""
Abstract class for all AirHockey Environments.
"""
class AirHockeyBase(MuJoCo):
def __init__(self, gamma=0.99, horizon=500, timestep=1 / 1000., n_intermediate_steps=20, n_substeps=1,
n_agents=1, viewer_params={}):
"""
Constructor.
Args:
n_agents (int, 1): number of agent to be used in the environment (one or two)
"""
self.n_agents = n_agents
action_spec = []
observation_spec = [("puck_x_pos", "puck_x", ObservationType.JOINT_POS),
("puck_y_pos", "puck_y", ObservationType.JOINT_POS),
("puck_yaw_pos", "puck_yaw", ObservationType.JOINT_POS),
("puck_x_vel", "puck_x", ObservationType.JOINT_VEL),
("puck_y_vel", "puck_y", ObservationType.JOINT_VEL),
("puck_yaw_vel", "puck_yaw", ObservationType.JOINT_VEL)]
additional_data = [("puck_x_pos", "puck_x", ObservationType.JOINT_POS),
("puck_y_pos", "puck_y", ObservationType.JOINT_POS),
("puck_yaw_pos", "puck_yaw", ObservationType.JOINT_POS),
("puck_x_vel", "puck_x", ObservationType.JOINT_VEL),
("puck_y_vel", "puck_y", ObservationType.JOINT_VEL),
("puck_yaw_vel", "puck_yaw", ObservationType.JOINT_VEL)]
collision_spec = [("puck", ["puck"]),
("rim", ["rim_home_l", "rim_home_r", "rim_away_l", "rim_away_r", "rim_left", "rim_right"]),
("rim_short_sides", ["rim_home_l", "rim_home_r", "rim_away_l", "rim_away_r"])]
if 1 <= self.n_agents <= 2:
scene = os.path.join(os.path.dirname(os.path.abspath(env_path)), "single.xml")
action_spec += ["iiwa_1/joint_1", "iiwa_1/joint_2", "iiwa_1/joint_3", "iiwa_1/joint_4", "iiwa_1/joint_5",
"iiwa_1/joint_6", "iiwa_1/joint_7"]
observation_spec += [("robot_1/joint_1_pos", "iiwa_1/joint_1", ObservationType.JOINT_POS),
("robot_1/joint_2_pos", "iiwa_1/joint_2", ObservationType.JOINT_POS),
("robot_1/joint_3_pos", "iiwa_1/joint_3", ObservationType.JOINT_POS),
("robot_1/joint_4_pos", "iiwa_1/joint_4", ObservationType.JOINT_POS),
("robot_1/joint_5_pos", "iiwa_1/joint_5", ObservationType.JOINT_POS),
("robot_1/joint_6_pos", "iiwa_1/joint_6", ObservationType.JOINT_POS),
("robot_1/joint_7_pos", "iiwa_1/joint_7", ObservationType.JOINT_POS),
("robot_1/joint_1_vel", "iiwa_1/joint_1", ObservationType.JOINT_VEL),
("robot_1/joint_2_vel", "iiwa_1/joint_2", ObservationType.JOINT_VEL),
("robot_1/joint_3_vel", "iiwa_1/joint_3", ObservationType.JOINT_VEL),
("robot_1/joint_4_vel", "iiwa_1/joint_4", ObservationType.JOINT_VEL),
("robot_1/joint_5_vel", "iiwa_1/joint_5", ObservationType.JOINT_VEL),
("robot_1/joint_6_vel", "iiwa_1/joint_6", ObservationType.JOINT_VEL),
("robot_1/joint_7_vel", "iiwa_1/joint_7", ObservationType.JOINT_VEL)]
additional_data += [("robot_1/joint_8_pos", "iiwa_1/striker_joint_1", ObservationType.JOINT_POS),
("robot_1/joint_9_pos", "iiwa_1/striker_joint_2", ObservationType.JOINT_POS),
("robot_1/joint_8_vel", "iiwa_1/striker_joint_1", ObservationType.JOINT_VEL),
("robot_1/joint_9_vel", "iiwa_1/striker_joint_2", ObservationType.JOINT_VEL),
("robot_1/ee_pos", "iiwa_1/striker_mallet", ObservationType.BODY_POS),
("robot_1/ee_vel", "iiwa_1/striker_mallet", ObservationType.BODY_VEL),
("robot_1/rod_rot", "iiwa_1/striker_joint_link", ObservationType.BODY_ROT)]
collision_spec += [("robot_1/ee", ["iiwa_1/ee"])]
if self.n_agents == 2:
scene = os.path.join(os.path.dirname(os.path.abspath(env_path)), "double.xml")
observation_spec += [("robot_1/opponent_ee_pos", "iiwa_2/striker_joint_link", ObservationType.BODY_POS)]
action_spec += ["iiwa_2/joint_1", "iiwa_2/joint_2", "iiwa_2/joint_3", "iiwa_2/joint_4",
"iiwa_2/joint_5",
"iiwa_2/joint_6", "iiwa_2/joint_7"]
observation_spec += [("robot_2/puck_x_pos", "puck_x", ObservationType.JOINT_POS),
("robot_2/puck_y_pos", "puck_y", ObservationType.JOINT_POS),
("robot_2/puck_yaw_pos", "puck_yaw", ObservationType.JOINT_POS),
("robot_2/puck_x_vel", "puck_x", ObservationType.JOINT_VEL),
("robot_2/puck_y_vel", "puck_y", ObservationType.JOINT_VEL),
("robot_2/puck_yaw_vel", "puck_yaw", ObservationType.JOINT_VEL),
("robot_2/joint_1_pos", "iiwa_2/joint_1", ObservationType.JOINT_POS),
("robot_2/joint_2_pos", "iiwa_2/joint_2", ObservationType.JOINT_POS),
("robot_2/joint_3_pos", "iiwa_2/joint_3", ObservationType.JOINT_POS),
("robot_2/joint_4_pos", "iiwa_2/joint_4", ObservationType.JOINT_POS),
("robot_2/joint_5_pos", "iiwa_2/joint_5", ObservationType.JOINT_POS),
("robot_2/joint_6_pos", "iiwa_2/joint_6", ObservationType.JOINT_POS),
("robot_2/joint_7_pos", "iiwa_2/joint_7", ObservationType.JOINT_POS),
("robot_2/joint_1_vel", "iiwa_2/joint_1", ObservationType.JOINT_VEL),
("robot_2/joint_2_vel", "iiwa_2/joint_2", ObservationType.JOINT_VEL),
("robot_2/joint_3_vel", "iiwa_2/joint_3", ObservationType.JOINT_VEL),
("robot_2/joint_4_vel", "iiwa_2/joint_4", ObservationType.JOINT_VEL),
("robot_2/joint_5_vel", "iiwa_2/joint_5", ObservationType.JOINT_VEL),
("robot_2/joint_6_vel", "iiwa_2/joint_6", ObservationType.JOINT_VEL),
("robot_2/joint_7_vel", "iiwa_2/joint_7", ObservationType.JOINT_VEL)]
observation_spec += [("robot_2/opponent_ee_pos", "iiwa_1/striker_joint_link", ObservationType.BODY_POS)]
additional_data += [("robot_2/joint_8_pos", "iiwa_2/striker_joint_1", ObservationType.JOINT_POS),
("robot_2/joint_9_pos", "iiwa_2/striker_joint_2", ObservationType.JOINT_POS),
("robot_2/joint_8_vel", "iiwa_2/striker_joint_1", ObservationType.JOINT_VEL),
("robot_2/joint_9_vel", "iiwa_2/striker_joint_2", ObservationType.JOINT_VEL),
("robot_2/ee_pos", "iiwa_2/striker_mallet", ObservationType.BODY_POS),
("robot_2/ee_vel", "iiwa_2/striker_mallet", ObservationType.BODY_VEL),
("robot_2/rod_rot", "iiwa_2/striker_joint_link", ObservationType.BODY_ROT)]
collision_spec += [("robot_2/ee", ["iiwa_2/ee"])]
else:
raise ValueError('n_agents should be 1 or 2')
self.env_info = dict()
self.env_info['table'] = {"length": 1.948, "width": 1.038, "goal_width": 0.25}
self.env_info['puck'] = {"radius": 0.03165}
self.env_info['mallet'] = {"radius": 0.04815}
self.env_info['n_agents'] = self.n_agents
self.env_info['robot'] = {
"n_joints": 7,
"ee_desired_height": 0.1645,
"joint_vel_limit": np.array([[-85, -85, -100, -75, -130, -135, -135],
[85, 85, 100, 75, 130, 135, 135]]) / 180. * np.pi,
"joint_acc_limit": np.array([[-85, -85, -100, -75, -130, -135, -135],
[85, 85, 100, 75, 130, 135, 135]]) / 180. * np.pi * 10,
"base_frame": [],
"universal_height": 0.0645,
"control_frequency": 50,
}
self.env_info['puck_pos_ids'] = [0, 1, 2]
self.env_info['puck_vel_ids'] = [3, 4, 5]
self.env_info['joint_pos_ids'] = [6, 7, 8, 9, 10, 11, 12]
self.env_info['joint_vel_ids'] = [13, 14, 15, 16, 17, 18, 19]
if self.n_agents == 2:
self.env_info['opponent_ee_ids'] = [20, 21, 22]
else:
self.env_info['opponent_ee_ids'] = []
max_joint_vel = ([np.inf] * 3 + list(self.env_info["robot"]["joint_vel_limit"][1, :7])) * self.n_agents
super().__init__(scene, action_spec, observation_spec, gamma, horizon, timestep, n_substeps,
n_intermediate_steps, additional_data, collision_spec, max_joint_vel, **viewer_params)
# Construct the mujoco model at origin
robot_model = mujoco.MjModel.from_xml_path(
os.path.join(os.path.dirname(os.path.abspath(env_path)), "iiwa_only.xml"))
robot_model.body('iiwa_1/base').pos = np.zeros(3)
robot_data = mujoco.MjData(robot_model)
# Add env_info that requires mujoco models
self.env_info['dt'] = self.dt
self.env_info["robot"]["joint_pos_limit"] = np.array(
[self._model.joint(f"iiwa_1/joint_{i + 1}").range for i in range(7)]).T
self.env_info["robot"]["robot_model"] = robot_model
self.env_info["robot"]["robot_data"] = robot_data
self.env_info["rl_info"] = self.info
frame_T = np.eye(4)
temp = np.zeros((9, 1))
mujoco.mju_quat2Mat(temp, self._model.body("iiwa_1/base").quat)
frame_T[:3, :3] = temp.reshape(3, 3)
frame_T[:3, 3] = self._model.body("iiwa_1/base").pos
self.env_info['robot']['base_frame'].append(frame_T.copy())
if self.n_agents == 2:
mujoco.mju_quat2Mat(temp, self._model.body("iiwa_2/base").quat)
frame_T[:3, :3] = temp.reshape(3, 3)
frame_T[:3, 3] = self._model.body("iiwa_2/base").pos
self.env_info['robot']['base_frame'].append(frame_T.copy())
# Ids of the joint, which are controller by the action space
self.actuator_joint_ids = [self._model.joint(name).id for name in action_spec]
self.universal_joint_plugin = UniversalJointPlugin(self._model, self._data, self.env_info)
def _modify_mdp_info(self, mdp_info):
obs_low = np.array([0, -1, -np.pi, -20., -20., -100,
*np.array([self._model.joint(f"iiwa_1/joint_{i + 1}").range[0]
for i in range(self.env_info['robot']['n_joints'])]),
*self.env_info['robot']['joint_vel_limit'][0]])
obs_high = np.array([3.02, 1, np.pi, 20., 20., 100,
*np.array([self._model.joint(f"iiwa_1/joint_{i + 1}").range[1]
for i in range(self.env_info['robot']['n_joints'])]),
*self.env_info['robot']['joint_vel_limit'][1]])
if self.n_agents == 2:
obs_low = np.concatenate([obs_low, [1.5, -1.5, -1.5]])
obs_high = np.concatenate([obs_high, [4.5, 1.5, 1.5]])
mdp_info.observation_space = Box(obs_low, obs_high)
return mdp_info
def _simulation_pre_step(self):
self.universal_joint_plugin.update()
def is_absorbing(self, obs):
boundary = np.array([self.env_info['table']['length'], self.env_info['table']['width']]) / 2
puck_pos, puck_vel = self.get_puck(obs)
if np.any(np.abs(puck_pos[:2]) > boundary) or np.linalg.norm(puck_vel) > 100:
return True
return False
@staticmethod
def _puck_2d_in_robot_frame(puck_in, robot_frame, type='pose'):
if type == 'pose':
puck_w = np.eye(4)
puck_w[:2, 3] = puck_in[:2]
puck_w[:3, :3] = R.from_euler("xyz", [0., 0., puck_in[2]]).as_matrix()
puck_r = np.linalg.inv(robot_frame) @ puck_w
puck_out = np.concatenate([puck_r[:2, 3],
R.from_matrix(puck_r[:3, :3]).as_euler('xyz')[2:3]])
if type == 'vel':
rot_mat = robot_frame[:3, :3]
vel_lin = np.array([*puck_in[:2], 0])
vel_ang = np.array([0., 0., puck_in[2]])
vel_lin_r = rot_mat.T @ vel_lin
vel_ang_r = rot_mat.T @ vel_ang
puck_out = np.concatenate([vel_lin_r[:2], vel_ang_r[2:3]])
return puck_out
def get_puck(self, obs):
"""
Getting the puck properties from the observations
Args:
obs: The current observation
Returns:
([pos_x, pos_y, yaw], [lin_vel_x, lin_vel_y, yaw_vel])
"""
puck_pos = np.concatenate([self.obs_helper.get_from_obs(obs, "puck_x_pos"),
self.obs_helper.get_from_obs(obs, "puck_y_pos"),
self.obs_helper.get_from_obs(obs, "puck_yaw_pos")])
puck_vel = np.concatenate([self.obs_helper.get_from_obs(obs, "puck_x_vel"),
self.obs_helper.get_from_obs(obs, "puck_y_vel"),
self.obs_helper.get_from_obs(obs, "puck_yaw_vel")])
return puck_pos, puck_vel
def get_ee(self):
raise NotImplementedError
def get_joints(self, obs):
raise NotImplementedError

View File

@ -0,0 +1,171 @@
import mujoco
import numpy as np
from scipy.spatial.transform import Rotation as R
from fancy_gym.envs.mujoco.air_hockey.seven_dof.env_base import AirHockeyBase
from fancy_gym.envs.mujoco.air_hockey.utils import inverse_kinematics
class AirHockeyDouble(AirHockeyBase):
"""
Base class for two agents air hockey tasks.
"""
def __init__(self, gamma=0.99, horizon=500, viewer_params={}):
super().__init__(gamma=gamma, horizon=horizon, n_agents=2, viewer_params=viewer_params)
self._compute_init_state()
self.filter_ratio = 0.274
self.q_pos_prev = np.zeros(self.env_info["robot"]["n_joints"] * self.env_info["n_agents"])
self.q_vel_prev = np.zeros(self.env_info["robot"]["n_joints"] * self.env_info["n_agents"])
def _compute_init_state(self):
init_state = np.array([0., -0.1961, 0., -1.8436, 0., 0.9704, 0.])
success, self.init_state = inverse_kinematics(self.env_info['robot']['robot_model'],
self.env_info['robot']['robot_data'],
np.array([0.65, 0., 0.1645]),
R.from_euler('xyz', [0, 5 / 6 * np.pi, 0]).as_matrix(),
initial_q=init_state)
assert success is True
def get_ee(self, robot=1):
"""
Getting the ee properties from the current internal state the selected robot. Can also be obtained via forward kinematics
on the current joint position, this function exists to avoid redundant computations.
Args:
robot: ID of robot, either 1 or 2
Returns: ([pos_x, pos_y, pos_z], [ang_vel_x, ang_vel_y, ang_vel_z, lin_vel_x, lin_vel_y, lin_vel_z])
"""
ee_pos = self._read_data("robot_" + str(robot) + "/ee_pos")
ee_vel = self._read_data("robot_" + str(robot) + "/ee_vel")
return ee_pos, ee_vel
def get_joints(self, obs, agent=None):
"""
Get joint position and velocity of the robots
Can choose the robot with agent = 1 / 2. If agent is None both are returned
"""
if agent:
q_pos = np.zeros(7)
q_vel = np.zeros(7)
for i in range(7):
q_pos[i] = self.obs_helper.get_from_obs(obs, "robot_" + str(agent) + "/joint_" + str(i + 1) + "_pos")[0]
q_vel[i] = self.obs_helper.get_from_obs(obs, "robot_" + str(agent) + "/joint_" + str(i + 1) + "_vel")[0]
else:
q_pos = np.zeros(14)
q_vel = np.zeros(14)
for i in range(7):
q_pos[i] = self.obs_helper.get_from_obs(obs, "robot_1/joint_" + str(i + 1) + "_pos")[0]
q_vel[i] = self.obs_helper.get_from_obs(obs, "robot_1/joint_" + str(i + 1) + "_vel")[0]
q_pos[i + 7] = self.obs_helper.get_from_obs(obs, "robot_2/joint_" + str(i + 1) + "_pos")[0]
q_vel[i + 7] = self.obs_helper.get_from_obs(obs, "robot_2/joint_" + str(i + 1) + "_vel")[0]
return q_pos, q_vel
def _create_observation(self, obs):
# Filter the joint velocity
q_pos, q_vel = self.get_joints(obs)
q_vel_filter = self.filter_ratio * q_vel + (1 - self.filter_ratio) * self.q_vel_prev
self.q_pos_prev = q_pos
self.q_vel_prev = q_vel_filter
for i in range(7):
self.obs_helper.get_from_obs(obs, "robot_1/joint_" + str(i + 1) + "_vel")[:] = q_vel_filter[i]
self.obs_helper.get_from_obs(obs, "robot_2/joint_" + str(i + 1) + "_vel")[:] = q_vel_filter[i + 7]
# Wrap puck's rotation angle to [-pi, pi)
yaw_angle = self.obs_helper.get_from_obs(obs, "puck_yaw_pos")
self.obs_helper.get_from_obs(obs, "puck_yaw_pos")[:] = (yaw_angle + np.pi) % (2 * np.pi) - np.pi
return obs
def _modify_observation(self, obs):
new_obs = obs.copy()
puck_pos, puck_vel = self.get_puck(new_obs)
puck_pos_1 = self._puck_2d_in_robot_frame(puck_pos, self.env_info['robot']['base_frame'][0])
puck_vel_1 = self._puck_2d_in_robot_frame(puck_vel, self.env_info['robot']['base_frame'][0], type='vel')
self.obs_helper.get_from_obs(new_obs, "puck_x_pos")[:] = puck_pos_1[0]
self.obs_helper.get_from_obs(new_obs, "puck_y_pos")[:] = puck_pos_1[1]
self.obs_helper.get_from_obs(new_obs, "puck_yaw_pos")[:] = puck_pos_1[2]
self.obs_helper.get_from_obs(new_obs, "puck_x_vel")[:] = puck_vel_1[0]
self.obs_helper.get_from_obs(new_obs, "puck_y_vel")[:] = puck_vel_1[1]
self.obs_helper.get_from_obs(new_obs, "puck_yaw_vel")[:] = puck_vel_1[2]
opponent_pos_1 = self.obs_helper.get_from_obs(new_obs, 'robot_1/opponent_ee_pos')
self.obs_helper.get_from_obs(new_obs, 'robot_1/opponent_ee_pos')[:] = \
(np.linalg.inv(self.env_info['robot']['base_frame'][0]) @ np.concatenate([opponent_pos_1, [1]]))[:3]
puck_pos_2 = self._puck_2d_in_robot_frame(puck_pos, self.env_info['robot']['base_frame'][1])
puck_vel_2 = self._puck_2d_in_robot_frame(puck_vel, self.env_info['robot']['base_frame'][1], type='vel')
self.obs_helper.get_from_obs(new_obs, "robot_2/puck_x_pos")[:] = puck_pos_2[0]
self.obs_helper.get_from_obs(new_obs, "robot_2/puck_y_pos")[:] = puck_pos_2[1]
self.obs_helper.get_from_obs(new_obs, "robot_2/puck_yaw_pos")[:] = puck_pos_2[2]
self.obs_helper.get_from_obs(new_obs, "robot_2/puck_x_vel")[:] = puck_vel_2[0]
self.obs_helper.get_from_obs(new_obs, "robot_2/puck_y_vel")[:] = puck_vel_2[1]
self.obs_helper.get_from_obs(new_obs, "robot_2/puck_yaw_vel")[:] = puck_vel_2[2]
opponent_pos_2 = self.obs_helper.get_from_obs(new_obs, 'robot_2/opponent_ee_pos')
self.obs_helper.get_from_obs(new_obs, 'robot_2/opponent_ee_pos')[:] = \
(np.linalg.inv(self.env_info['robot']['base_frame'][1]) @ np.concatenate([opponent_pos_2, [1]]))[:3]
return new_obs
def setup(self, obs):
for i in range(7):
self._data.joint("iiwa_1/joint_" + str(i + 1)).qpos = self.init_state[i]
self._data.joint("iiwa_2/joint_" + str(i + 1)).qpos = self.init_state[i]
self.q_pos_prev[i] = self.init_state[i]
self.q_pos_prev[i + 7] = self.init_state[i]
self.q_vel_prev[i] = self._data.joint("iiwa_1/joint_" + str(i + 1)).qvel[0]
self.q_vel_prev[i + 7] = self._data.joint("iiwa_2/joint_" + str(i + 1)).qvel[0]
self.universal_joint_plugin.reset()
super().setup(obs)
# Update body positions, needed for _compute_universal_joint
mujoco.mj_fwdPosition(self._model, self._data)
def reward(self, state, action, next_state, absorbing):
return 0
def main():
env = AirHockeyDouble(viewer_params={'start_paused': True})
env.reset()
env.render()
R = 0.
J = 0.
gamma = 1.
steps = 0
while True:
action = np.zeros(14)
observation, reward, done, info = env.step(action)
env.render()
gamma *= env.info.gamma
J += gamma * reward
R += reward
steps += 1
if done or steps > env.info.horizon:
print("J: ", J, " R: ", R)
R = 0.
J = 0.
gamma = 1.
steps = 0
env.reset()
if __name__ == '__main__':
main()

View File

@ -0,0 +1,104 @@
import mujoco
import numpy as np
from scipy.spatial.transform import Rotation as R
from fancy_gym.envs.mujoco.air_hockey.seven_dof.env_base import AirHockeyBase
from fancy_gym.envs.mujoco.air_hockey.utils import inverse_kinematics
class AirHockeySingle(AirHockeyBase):
"""
Base class for single agent air hockey tasks.
"""
def __init__(self, gamma=0.99, horizon=500, viewer_params={}):
super().__init__(gamma=gamma, horizon=horizon, n_agents=1, viewer_params=viewer_params)
self._compute_init_state()
self.filter_ratio = 0.274
self.q_pos_prev = np.zeros(self.env_info["robot"]["n_joints"])
self.q_vel_prev = np.zeros(self.env_info["robot"]["n_joints"])
def _compute_init_state(self):
init_state = np.array([0., -0.1961, 0., -1.8436, 0., 0.9704, 0.])
success, self.init_state = inverse_kinematics(self.env_info['robot']['robot_model'],
self.env_info['robot']['robot_data'],
np.array([0.65, 0., 0.1645]),
R.from_euler('xyz', [0, 5 / 6 * np.pi, 0]).as_matrix(),
initial_q=init_state)
assert success is True
def get_ee(self):
"""
Getting the ee properties from the current internal state. Can also be obtained via forward kinematics
on the current joint position, this function exists to avoid redundant computations.
Returns:
([pos_x, pos_y, pos_z], [ang_vel_x, ang_vel_y, ang_vel_z, lin_vel_x, lin_vel_y, lin_vel_z])
"""
ee_pos = self._read_data("robot_1/ee_pos")
ee_vel = self._read_data("robot_1/ee_vel")
return ee_pos, ee_vel
def get_joints(self, obs):
"""
Get joint position and velocity of the robot
"""
q_pos = np.zeros(7)
q_vel = np.zeros(7)
for i in range(7):
q_pos[i] = self.obs_helper.get_from_obs(obs, "robot_1/joint_" + str(i + 1) + "_pos")[0]
q_vel[i] = self.obs_helper.get_from_obs(obs, "robot_1/joint_" + str(i + 1) + "_vel")[0]
return q_pos, q_vel
def _create_observation(self, obs):
# Filter the joint velocity
q_pos, q_vel = self.get_joints(obs)
q_vel_filter = self.filter_ratio * q_vel + (1 - self.filter_ratio) * self.q_vel_prev
self.q_pos_prev = q_pos
self.q_vel_prev = q_vel_filter
for i in range(7):
self.obs_helper.get_from_obs(obs, "robot_1/joint_" + str(i + 1) + "_vel")[:] = q_vel_filter[i]
yaw_angle = self.obs_helper.get_from_obs(obs, "puck_yaw_pos")
self.obs_helper.get_from_obs(obs, "puck_yaw_pos")[:] = (yaw_angle + np.pi) % (2 * np.pi) - np.pi
return obs
def _modify_observation(self, obs):
new_obs = obs.copy()
puck_pos, puck_vel = self.get_puck(new_obs)
puck_pos = self._puck_2d_in_robot_frame(puck_pos, self.env_info['robot']['base_frame'][0])
puck_vel = self._puck_2d_in_robot_frame(puck_vel, self.env_info['robot']['base_frame'][0], type='vel')
self.obs_helper.get_from_obs(new_obs, "puck_x_pos")[:] = puck_pos[0]
self.obs_helper.get_from_obs(new_obs, "puck_y_pos")[:] = puck_pos[1]
self.obs_helper.get_from_obs(new_obs, "puck_yaw_pos")[:] = puck_pos[2]
self.obs_helper.get_from_obs(new_obs, "puck_x_vel")[:] = puck_vel[0]
self.obs_helper.get_from_obs(new_obs, "puck_y_vel")[:] = puck_vel[1]
self.obs_helper.get_from_obs(new_obs, "puck_yaw_vel")[:] = puck_vel[2]
return new_obs
def setup(self, obs):
for i in range(7):
self._data.joint("iiwa_1/joint_" + str(i + 1)).qpos = self.init_state[i]
self.q_pos_prev[i] = self.init_state[i]
self.q_vel_prev[i] = self._data.joint("iiwa_1/joint_" + str(i + 1)).qvel[0]
self.universal_joint_plugin.reset()
super().setup(obs)
# Update body positions, needed for _compute_universal_joint
mujoco.mj_fwdPosition(self._model, self._data)

View File

@ -0,0 +1,74 @@
import numpy as np
from fancy_gym.envs.mujoco.air_hockey.seven_dof.env_single import AirHockeySingle
class AirHockeyHit(AirHockeySingle):
"""
Class for the air hockey hitting task.
"""
def __init__(self, gamma=0.99, horizon=500, moving_init=True, viewer_params={}):
"""
Constructor
Args:
opponent_agent(Agent, None): Agent which controls the opponent
moving_init(bool, False): If true, initialize the puck with inital velocity.
"""
self.hit_range = np.array([[-0.65, -0.25], [-0.4, 0.4]]) # Table Frame
self.init_velocity_range = (0, 0.5) # Table Frame
super().__init__(gamma=gamma, horizon=horizon, viewer_params=viewer_params)
self.moving_init = moving_init
hit_width = self.env_info['table']['width'] / 2 - self.env_info['puck']['radius'] - \
self.env_info['mallet']['radius'] * 2
self.hit_range = np.array([[-0.7, -0.2], [-hit_width, hit_width]]) # Table Frame
self.init_velocity_range = (0, 0.5) # Table Frame
self.init_ee_range = np.array([[0.60, 1.25], [-0.4, 0.4]]) # Robot Frame
def setup(self, obs):
# Initial position of the puck
puck_pos = np.random.rand(2) * (self.hit_range[:, 1] - self.hit_range[:, 0]) + self.hit_range[:, 0]
self._write_data("puck_x_pos", puck_pos[0])
self._write_data("puck_y_pos", puck_pos[1])
if self.moving_init:
lin_vel = np.random.uniform(self.init_velocity_range[0], self.init_velocity_range[1])
angle = np.random.uniform(-np.pi / 2 - 0.1, np.pi / 2 + 0.1)
puck_vel = np.zeros(3)
puck_vel[0] = -np.cos(angle) * lin_vel
puck_vel[1] = np.sin(angle) * lin_vel
puck_vel[2] = np.random.uniform(-2, 2)
self._write_data("puck_x_vel", puck_vel[0])
self._write_data("puck_y_vel", puck_vel[1])
self._write_data("puck_yaw_vel", puck_vel[2])
super(AirHockeyHit, self).setup(obs)
def reward(self, state, action, next_state, absorbing):
return 0
def is_absorbing(self, obs):
puck_pos, puck_vel = self.get_puck(obs)
# Stop if the puck bounces back on the opponents wall
if puck_pos[0] > 0 and puck_vel[0] < 0:
return True
return super(AirHockeyHit, self).is_absorbing(obs)
if __name__ == '__main__':
env = AirHockeyHit(moving_init=True)
env.reset()
steps = 0
while True:
action = np.zeros(7)
observation, reward, done, info = env.step(action)
env.render()
if done or steps > env.info.horizon:
steps = 0
env.reset()

View File

@ -0,0 +1,111 @@
import mujoco
import numpy as np
from fancy_gym.envs.mujoco.air_hockey.seven_dof.env_double import AirHockeyDouble
class AirHockeyTournament(AirHockeyDouble):
"""
Class for the air hockey tournament. Consists of 2 robots which should play against each other.
When the puck is on one side for more than 15 seconds the puck is reset and the player gets a penalty.
If a player accumulates 3 penalties his score is reduced by 1.
"""
def __init__(self, gamma=0.99, horizon=15000, viewer_params={}, agent_name="Agent", opponent_name="Opponent"):
self.agent_name = agent_name
self.opponent_name = opponent_name
self.score = [0, 0]
self.faults = [0, 0]
self.start_side = None
self.timer = 0
def custom_render_callback(viewport, context):
names = f"Agents \nScores \nFaults "
data = f"{self.agent_name} - {self.opponent_name}\n "
data += f"{self.score[0]} - {self.score[1]}\n "
data += f"{self.faults[0]} - {self.faults[1]}"
mujoco.mjr_overlay(mujoco.mjtFont.mjFONT_BIG, mujoco.mjtGridPos.mjGRID_TOPLEFT, viewport, names, data, context)
viewer_params["custom_render_callback"] = custom_render_callback
super().__init__(gamma=gamma, horizon=horizon, viewer_params=viewer_params)
hit_width = self.env_info['table']['width'] / 2 - self.env_info['puck']['radius'] - \
self.env_info['mallet']['radius'] * 2
self.hit_range = np.array([[-0.7, -0.2], [-hit_width, hit_width]]) # Table Frame
def setup(self, obs):
if self.start_side == None:
self.start_side = np.random.choice([1, -1])
self.prev_side = self.start_side
# Initial position of the puck
puck_pos = np.random.rand(2) * (self.hit_range[:, 1] - self.hit_range[:, 0]) + self.hit_range[:, 0]
self._write_data("puck_x_pos", puck_pos[0] * self.start_side)
self._write_data("puck_y_pos", puck_pos[1])
self.prev_side = self.start_side
self.timer = 0
super(AirHockeyTournament, self).setup(obs)
def reward(self, state, action, next_state, absorbing):
return 0
def is_absorbing(self, obs):
puck_pos, puck_vel = self.get_puck(obs)
# Puck stuck on one side for more than 15s
if np.sign(puck_pos[0]) == self.prev_side:
self.timer += self.dt
else:
self.prev_side *= -1
self.timer = 0
if self.timer > 15.0 and np.abs(puck_pos[0]) >= 0.15:
if self.prev_side == -1:
self.faults[0] += 1
self.start_side = -1
if self.faults[0] % 3 == 0:
self.score[1] += 1
else:
self.faults[1] += 1
self.start_side = 1
if self.faults[1] % 3 == 0:
self.score[0] += 1
return True
# Puck in Goal
if (np.abs(puck_pos[1]) - self.env_info['table']['goal_width'] / 2) <= 0:
if puck_pos[0] > self.env_info['table']['length'] / 2:
self.score[0] += 1
self.start_side = -1
return True
if puck_pos[0] < -self.env_info['table']['length'] / 2:
self.score[1] += 1
self.start_side = 1
return True
# Puck stuck in the middle
if np.abs(puck_pos[0]) < 0.15 and np.linalg.norm(puck_vel[0]) < 0.025:
return True
return super(AirHockeyTournament, self).is_absorbing(obs)
if __name__ == '__main__':
env = AirHockeyTournament()
env.reset()
steps = 0
while True:
action = np.zeros(14)
steps += 1
observation, reward, done, info = env.step(action)
env.render()
if done or steps > env.info.horizon:
steps = 0
env.reset()

View File

@ -0,0 +1,3 @@
from .env_base import AirHockeyBase
from .defend import AirHockeyDefend
from .hit import AirHockeyHit

View File

@ -0,0 +1,76 @@
import numpy as np
from fancy_gym.envs.mujoco.air_hockey.three_dof.env_single import AirHockeySingle
class AirHockeyDefend(AirHockeySingle):
"""
Class for the air hockey defending task.
The agent should stop the puck at the line x=-0.6.
"""
def __init__(self, gamma=0.99, horizon=500, viewer_params={}):
self.init_velocity_range = (1, 3)
self.start_range = np.array([[0.29, 0.65], [-0.4, 0.4]]) # Table Frame
self.init_ee_range = np.array([[0.60, 1.25], [-0.4, 0.4]]) # Robot Frame
super().__init__(gamma=gamma, horizon=horizon, viewer_params=viewer_params)
def setup(self, state=None):
# Set initial puck parameters
puck_pos = np.random.rand(2) * (self.start_range[:, 1] - self.start_range[:, 0]) + self.start_range[:, 0]
lin_vel = np.random.uniform(self.init_velocity_range[0], self.init_velocity_range[1])
angle = np.random.uniform(-0.5, 0.5)
puck_vel = np.zeros(3)
puck_vel[0] = -np.cos(angle) * lin_vel
puck_vel[1] = np.sin(angle) * lin_vel
puck_vel[2] = np.random.uniform(-10, 10)
self._write_data("puck_x_pos", puck_pos[0])
self._write_data("puck_y_pos", puck_pos[1])
self._write_data("puck_x_vel", puck_vel[0])
self._write_data("puck_y_vel", puck_vel[1])
self._write_data("puck_yaw_vel", puck_vel[2])
super(AirHockeyDefend, self).setup(state)
def reward(self, state, action, next_state, absorbing):
return 0
def is_absorbing(self, state):
puck_pos, puck_vel = self.get_puck(state)
# If puck is over the middle line and moving towards opponent
if puck_pos[0] > 0 and puck_vel[0] > 0:
return True
if np.linalg.norm(puck_vel[:2]) < 0.1:
return True
return super().is_absorbing(state)
if __name__ == '__main__':
env = AirHockeyDefend()
R = 0.
J = 0.
gamma = 1.
steps = 0
env.reset()
while True:
action = np.zeros(3)
observation, reward, done, info = env.step(action)
env.render()
gamma *= env.info.gamma
J += gamma * reward
R += reward
steps += 1
if done or steps > env.info.horizon:
print("J: ", J, " R: ", R)
R = 0.
J = 0.
gamma = 1.
steps = 0
env.reset()

View File

@ -0,0 +1,224 @@
import os
import mujoco
import numpy as np
from scipy.spatial.transform import Rotation as R
from fancy_gym.envs.mujoco.air_hockey.data.planar import __file__ as env_path
from mushroom_rl.environments.mujoco import MuJoCo, ObservationType
from mushroom_rl.utils.spaces import Box
class AirHockeyBase(MuJoCo):
"""
Abstract class for all AirHockey Environments.
"""
def __init__(self, gamma=0.99, horizon=500, timestep=1 / 1000., n_intermediate_steps=20, n_substeps=1,
n_agents=1, viewer_params={}):
"""
Constructor.
Args:
n_agents (int, 1): number of agent to be used in the environment (one or two)
"""
self.n_agents = n_agents
action_spec = []
observation_spec = [("puck_x_pos", "puck_x", ObservationType.JOINT_POS),
("puck_y_pos", "puck_y", ObservationType.JOINT_POS),
("puck_yaw_pos", "puck_yaw", ObservationType.JOINT_POS),
("puck_x_vel", "puck_x", ObservationType.JOINT_VEL),
("puck_y_vel", "puck_y", ObservationType.JOINT_VEL),
("puck_yaw_vel", "puck_yaw", ObservationType.JOINT_VEL)]
additional_data = [("puck_x_pos", "puck_x", ObservationType.JOINT_POS),
("puck_y_pos", "puck_y", ObservationType.JOINT_POS),
("puck_yaw_pos", "puck_yaw", ObservationType.JOINT_POS),
("puck_x_vel", "puck_x", ObservationType.JOINT_VEL),
("puck_y_vel", "puck_y", ObservationType.JOINT_VEL),
("puck_yaw_vel", "puck_yaw", ObservationType.JOINT_VEL)]
collision_spec = [("puck", ["puck"]),
("rim", ["rim_home_l", "rim_home_r", "rim_away_l", "rim_away_r", "rim_left", "rim_right"]),
("rim_short_sides", ["rim_home_l", "rim_home_r", "rim_away_l", "rim_away_r"])]
if 1 <= self.n_agents <= 2:
scene = os.path.join(os.path.dirname(os.path.abspath(env_path)), "single.xml")
action_spec += ["planar_robot_1/joint_1", "planar_robot_1/joint_2", "planar_robot_1/joint_3"]
observation_spec += [("robot_1/joint_1_pos", "planar_robot_1/joint_1", ObservationType.JOINT_POS),
("robot_1/joint_2_pos", "planar_robot_1/joint_2", ObservationType.JOINT_POS),
("robot_1/joint_3_pos", "planar_robot_1/joint_3", ObservationType.JOINT_POS),
("robot_1/joint_1_vel", "planar_robot_1/joint_1", ObservationType.JOINT_VEL),
("robot_1/joint_2_vel", "planar_robot_1/joint_2", ObservationType.JOINT_VEL),
("robot_1/joint_3_vel", "planar_robot_1/joint_3", ObservationType.JOINT_VEL)]
additional_data += [("robot_1/ee_pos", "planar_robot_1/body_ee", ObservationType.BODY_POS),
("robot_1/ee_vel", "planar_robot_1/body_ee", ObservationType.BODY_VEL)]
collision_spec += [("robot_1/ee", ["planar_robot_1/ee"])]
if self.n_agents == 2:
scene = os.path.join(os.path.dirname(os.path.abspath(env_path)), "double.xml")
observation_spec += [("robot_1/opponent_ee_pos", "planar_robot_2/body_ee", ObservationType.BODY_POS)]
action_spec += ["planar_robot_2/joint_1", "planar_robot_2/joint_2", "planar_robot_2/joint_3"]
# Add puck pos/vel again to transform into second agents frame
observation_spec += [("robot_2/puck_x_pos", "puck_x", ObservationType.JOINT_POS),
("robot_2/puck_y_pos", "puck_y", ObservationType.JOINT_POS),
("robot_2/puck_yaw_pos", "puck_yaw", ObservationType.JOINT_POS),
("robot_2/puck_x_vel", "puck_x", ObservationType.JOINT_VEL),
("robot_2/puck_y_vel", "puck_y", ObservationType.JOINT_VEL),
("robot_2/puck_yaw_vel", "puck_yaw", ObservationType.JOINT_VEL),
("robot_2/joint_1_pos", "planar_robot_2/joint_1", ObservationType.JOINT_POS),
("robot_2/joint_2_pos", "planar_robot_2/joint_2", ObservationType.JOINT_POS),
("robot_2/joint_3_pos", "planar_robot_2/joint_3", ObservationType.JOINT_POS),
("robot_2/joint_1_vel", "planar_robot_2/joint_1", ObservationType.JOINT_VEL),
("robot_2/joint_2_vel", "planar_robot_2/joint_2", ObservationType.JOINT_VEL),
("robot_2/joint_3_vel", "planar_robot_2/joint_3", ObservationType.JOINT_VEL)]
observation_spec += [("robot_2/opponent_ee_pos", "planar_robot_1/body_ee", ObservationType.BODY_POS)]
additional_data += [("robot_2/ee_pos", "planar_robot_2/body_ee", ObservationType.BODY_POS),
("robot_2/ee_vel", "planar_robot_2/body_ee", ObservationType.BODY_VEL)]
collision_spec += [("robot_2/ee", ["planar_robot_2/ee"])]
else:
raise ValueError('n_agents should be 1 or 2')
self.env_info = dict()
self.env_info['table'] = {"length": 1.948, "width": 1.038, "goal_width": 0.25}
self.env_info['puck'] = {"radius": 0.03165}
self.env_info['mallet'] = {"radius": 0.04815}
self.env_info['n_agents'] = self.n_agents
self.env_info['robot'] = {
"n_joints": 3,
"ee_desired_height": 0.1,
"joint_vel_limit": np.array([[-np.pi / 2, -np.pi / 2, -np.pi * 2 / 3],
[np.pi / 2, np.pi / 2, np.pi * 2 / 3]]),
"joint_acc_limit": np.array([[-2 * np.pi, -2 * np.pi, -2 * 4 / 3 * np.pi],
[2 * np.pi, 2 * np.pi, 2 * 4 / 3 * np.pi]]),
"base_frame": [],
"control_frequency": 50,
}
self.env_info['puck_pos_ids'] = [0, 1, 2]
self.env_info['puck_vel_ids'] = [3, 4, 5]
self.env_info['joint_pos_ids'] = [6, 7, 8]
self.env_info['joint_vel_ids'] = [9, 10, 11]
if self.n_agents == 2:
self.env_info['opponent_ee_ids'] = [13, 14, 15]
else:
self.env_info['opponent_ee_ids'] = []
max_joint_vel = ([np.inf] * 3 + list(self.env_info["robot"]["joint_vel_limit"][1, :3])) * self.n_agents
super().__init__(scene, action_spec, observation_spec, gamma, horizon, timestep, n_substeps,
n_intermediate_steps, additional_data, collision_spec, max_joint_vel, **viewer_params)
# Construct the mujoco model at origin
robot_model = mujoco.MjModel.from_xml_path(
os.path.join(os.path.dirname(os.path.abspath(env_path)), "planar_robot_1.xml"))
robot_model.body('planar_robot_1/base').pos = np.zeros(3)
robot_data = mujoco.MjData(robot_model)
# Add env_info that requires mujoco models
self.env_info['dt'] = self.dt
self.env_info["robot"]["joint_pos_limit"] = np.array(
[self._model.joint(f"planar_robot_1/joint_{i + 1}").range for i in range(3)]).T
self.env_info["robot"]["robot_model"] = robot_model
self.env_info["robot"]["robot_data"] = robot_data
self.env_info["rl_info"] = self.info
frame_T = np.eye(4)
temp = np.zeros((9, 1))
mujoco.mju_quat2Mat(temp, self._model.body("planar_robot_1/base").quat)
frame_T[:3, :3] = temp.reshape(3, 3)
frame_T[:3, 3] = self._model.body("planar_robot_1/base").pos
self.env_info['robot']['base_frame'].append(frame_T.copy())
if self.n_agents == 2:
mujoco.mju_quat2Mat(temp, self._model.body("planar_robot_2/base").quat)
frame_T[:3, :3] = temp.reshape(3, 3)
frame_T[:3, 3] = self._model.body("planar_robot_2/base").pos
self.env_info['robot']['base_frame'].append(frame_T.copy())
# Ids of the joint, which are controller by the action space
self.actuator_joint_ids = [self._model.joint(name).id for name in action_spec]
def _modify_mdp_info(self, mdp_info):
obs_low = np.array([0, -1, -np.pi, -20., -20., -100,
*np.array([self._model.joint(f"planar_robot_1/joint_{i + 1}").range[0]
for i in range(self.env_info['robot']['n_joints'])]),
*self.env_info['robot']['joint_vel_limit'][0]])
obs_high = np.array([3.02, 1, np.pi, 20., 20., 100,
*np.array([self._model.joint(f"planar_robot_1/joint_{i + 1}").range[1]
for i in range(self.env_info['robot']['n_joints'])]),
*self.env_info['robot']['joint_vel_limit'][1]])
if self.n_agents == 2:
obs_low = np.concatenate([obs_low, [1.5, -1.5, -1.5]])
obs_high = np.concatenate([obs_high, [4.5, 1.5, 1.5]])
mdp_info.observation_space = Box(obs_low, obs_high)
return mdp_info
def is_absorbing(self, obs):
boundary = np.array([self.env_info['table']['length'], self.env_info['table']['width']]) / 2
puck_pos, puck_vel = self.get_puck(obs)
if np.any(np.abs(puck_pos[:2]) > boundary) or np.linalg.norm(puck_vel) > 100:
return True
return False
@staticmethod
def _puck_2d_in_robot_frame(puck_in, robot_frame, type='pose'):
if type == 'pose':
puck_w = np.eye(4)
puck_w[:2, 3] = puck_in[:2]
puck_w[:3, :3] = R.from_euler("xyz", [0., 0., puck_in[2]]).as_matrix()
puck_r = np.linalg.inv(robot_frame) @ puck_w
puck_out = np.concatenate([puck_r[:2, 3],
R.from_matrix(puck_r[:3, :3]).as_euler('xyz')[2:3]])
if type == 'vel':
rot_mat = robot_frame[:3, :3]
vel_lin = np.array([*puck_in[:2], 0])
vel_ang = np.array([0., 0., puck_in[2]])
vel_lin_r = rot_mat.T @ vel_lin
vel_ang_r = rot_mat.T @ vel_ang
puck_out = np.concatenate([vel_lin_r[:2], vel_ang_r[2:3]])
return puck_out
def get_puck(self, obs):
"""
Getting the puck properties from the observations
Args:
obs: The current observation
Returns:
([pos_x, pos_y, yaw], [lin_vel_x, lin_vel_y, yaw_vel])
"""
puck_pos = np.concatenate([self.obs_helper.get_from_obs(obs, "puck_x_pos"),
self.obs_helper.get_from_obs(obs, "puck_y_pos"),
self.obs_helper.get_from_obs(obs, "puck_yaw_pos")])
puck_vel = np.concatenate([self.obs_helper.get_from_obs(obs, "puck_x_vel"),
self.obs_helper.get_from_obs(obs, "puck_y_vel"),
self.obs_helper.get_from_obs(obs, "puck_yaw_vel")])
return puck_pos, puck_vel
def get_ee(self):
raise NotImplementedError
def get_joints(self, obs):
raise NotImplementedError

View File

@ -0,0 +1,91 @@
import mujoco
import numpy as np
from fancy_gym.envs.mujoco.air_hockey.three_dof.env_base import AirHockeyBase
class AirHockeySingle(AirHockeyBase):
"""
Base class for single agent air hockey tasks.
"""
def __init__(self, gamma=0.99, horizon=500, viewer_params={}):
"""
Constructor.
"""
self.init_state = np.array([-1.15570723, 1.30024401, 1.44280414])
super().__init__(gamma=gamma, horizon=horizon, n_agents=1, viewer_params=viewer_params)
self.filter_ratio = 0.274
self.q_pos_prev = np.zeros(self.env_info["robot"]["n_joints"])
self.q_vel_prev = np.zeros(self.env_info["robot"]["n_joints"])
def get_ee(self):
"""
Getting the ee properties from the current internal state. Can also be obtained via forward kinematics
on the current joint position, this function exists to avoid redundant computations.
Returns:
([pos_x, pos_y, pos_z], [ang_vel_x, ang_vel_y, ang_vel_z, lin_vel_x, lin_vel_y, lin_vel_z])
"""
ee_pos = self._read_data("robot_1/ee_pos")
ee_vel = self._read_data("robot_1/ee_vel")
return ee_pos, ee_vel
def get_joints(self, obs):
"""
Get joint position and velocity of the robot
"""
q_pos = np.zeros(3)
q_vel = np.zeros(3)
for i in range(3):
q_pos[i] = self.obs_helper.get_from_obs(obs, "robot_1/joint_" + str(i + 1) + "_pos")[0]
q_vel[i] = self.obs_helper.get_from_obs(obs, "robot_1/joint_" + str(i + 1) + "_vel")[0]
return q_pos, q_vel
def _modify_observation(self, obs):
new_obs = obs.copy()
puck_pos, puck_vel = self.get_puck(obs)
puck_pos = self._puck_2d_in_robot_frame(puck_pos, self.env_info['robot']['base_frame'][0])
puck_vel = self._puck_2d_in_robot_frame(puck_vel, self.env_info['robot']['base_frame'][0], type='vel')
self.obs_helper.get_from_obs(new_obs, "puck_x_pos")[:] = puck_pos[0]
self.obs_helper.get_from_obs(new_obs, "puck_y_pos")[:] = puck_pos[1]
self.obs_helper.get_from_obs(new_obs, "puck_yaw_pos")[:] = puck_pos[2]
self.obs_helper.get_from_obs(new_obs, "puck_x_vel")[:] = puck_vel[0]
self.obs_helper.get_from_obs(new_obs, "puck_y_vel")[:] = puck_vel[1]
self.obs_helper.get_from_obs(new_obs, "puck_yaw_vel")[:] = puck_vel[2]
return new_obs
def setup(self, state=None):
for i in range(3):
self._data.joint("planar_robot_1/joint_" + str(i + 1)).qpos = self.init_state[i]
self.q_pos_prev[i] = self.init_state[i]
self.q_vel_prev[i] = self._data.joint("planar_robot_1/joint_" + str(i + 1)).qvel[0]
mujoco.mj_fwdPosition(self._model, self._data)
super().setup(state)
def _create_observation(self, obs):
# Filter the joint velocity
q_pos, q_vel = self.get_joints(obs)
q_vel_filter = self.filter_ratio * q_vel + (1 - self.filter_ratio) * self.q_vel_prev
self.q_pos_prev = q_pos
self.q_vel_prev = q_vel_filter
for i in range(3):
self.obs_helper.get_from_obs(obs, "robot_1/joint_" + str(i + 1) + "_vel")[:] = q_vel_filter[i]
yaw_angle = self.obs_helper.get_from_obs(obs, "puck_yaw_pos")
self.obs_helper.get_from_obs(obs, "puck_yaw_pos")[:] = (yaw_angle + np.pi) % (2 * np.pi) - np.pi
return obs

View File

@ -0,0 +1,84 @@
import numpy as np
from fancy_gym.envs.mujoco.air_hockey.three_dof.env_single import AirHockeySingle
class AirHockeyHit(AirHockeySingle):
"""
Class for the air hockey hitting task.
"""
def __init__(self, gamma=0.99, horizon=500, moving_init=False, viewer_params={}):
"""
Constructor
Args:
moving_init(bool, False): If true, initialize the puck with inital velocity.
"""
super().__init__(gamma=gamma, horizon=horizon, viewer_params=viewer_params)
self.moving_init = moving_init
hit_width = self.env_info['table']['width'] / 2 - self.env_info['puck']['radius'] - \
self.env_info['mallet']['radius'] * 2
self.hit_range = np.array([[-0.7, -0.2], [-hit_width, hit_width]]) # Table Frame
self.init_velocity_range = (0, 0.5) # Table Frame
self.init_ee_range = np.array([[0.60, 1.25], [-0.4, 0.4]]) # Robot Frame
def setup(self, state=None):
# Initial position of the puck
puck_pos = np.random.rand(2) * (self.hit_range[:, 1] - self.hit_range[:, 0]) + self.hit_range[:, 0]
# self.init_state = np.array([-0.9273, 0.9273, np.pi / 2])
self._write_data("puck_x_pos", puck_pos[0])
self._write_data("puck_y_pos", puck_pos[1])
if self.moving_init:
lin_vel = np.random.uniform(self.init_velocity_range[0], self.init_velocity_range[1])
angle = np.random.uniform(-np.pi / 2 - 0.1, np.pi / 2 + 0.1)
puck_vel = np.zeros(3)
puck_vel[0] = -np.cos(angle) * lin_vel
puck_vel[1] = np.sin(angle) * lin_vel
puck_vel[2] = np.random.uniform(-2, 2, 1)
self._write_data("puck_x_vel", puck_vel[0])
self._write_data("puck_y_vel", puck_vel[1])
self._write_data("puck_yaw_vel", puck_vel[2])
super(AirHockeyHit, self).setup(state)
def reward(self, state, action, next_state, absorbing):
return 0
def is_absorbing(self, obs):
puck_pos, puck_vel = self.get_puck(obs)
# Stop if the puck bounces back on the opponents wall
if puck_pos[0] > 0 and puck_vel[0] < 0:
return True
return super(AirHockeyHit, self).is_absorbing(obs)
if __name__ == '__main__':
env = AirHockeyHit(moving_init=False)
env.reset()
env.render()
R = 0.
J = 0.
gamma = 1.
steps = 0
while True:
action = np.zeros(3)
observation, reward, done, info = env.step(action)
env.render()
gamma *= env.info.gamma
J += gamma * reward
R += reward
steps += 1
if done or steps > env.info.horizon:
print("J: ", J, " R: ", R)
R = 0.
J = 0.
gamma = 1.
steps = 0
env.reset()

View File

@ -0,0 +1,2 @@
from .kinematics import inverse_kinematics, forward_kinematics, jacobian
from .transformations import robot_to_world, world_to_robot

View File

@ -0,0 +1,248 @@
import mujoco
import numpy as np
def forward_kinematics(mj_model, mj_data, q, link="ee"):
"""
Compute the forward kinematics of the robots.
IMPORTANT:
For the iiwa we assume that the universal joint at the end of the end-effector always leaves the mallet
parallel to the table and facing down. This assumption only makes sense for a subset of robot configurations
where the mallet can be parallel to the table without colliding with the rod it is mounted on. If this is the
case this function will return the wrong values.
Coordinate System:
All translations and rotations are in the coordinate frame of the Robot. The zero point is in the center of the
base of the Robot. The x-axis points forward, the z-axis points up and the y-axis forms a right-handed
coordinate system
Args:
mj_model (mujoco.MjModel):
mujoco MjModel of the robot-only model
mj_data (mujoco.MjData):
mujoco MjData object generated from the model
q (np.array):
joint configuration for which the forward kinematics are computed
link (string, "ee"):
Link for which the forward kinematics is calculated. When using the iiwas the choices are
["1", "2", "3", "4", "5", "6", "7", "ee"]. When using planar the choices are ["1", "2", "3", "ee"]
Returns
-------
position: numpy.ndarray, (3,)
Position of the link in robot's base frame
orientation: numpy.ndarray, (3, 3)
Orientation of the link in robot's base frame
"""
return _mujoco_fk(q, link_to_xml_name(mj_model, link), mj_model, mj_data)
def inverse_kinematics(mj_model, mj_data, desired_position, desired_rotation=None, initial_q=None, link="ee"):
"""
Compute the inverse kinematics of the robots.
IMPORTANT:
For the iiwa we assume that the universal joint at the end of the end-effector always leaves the mallet
parallel to the table and facing down. This assumption only makes sense for a subset of robot configurations
where the mallet can be parallel to the table without colliding with the rod it is mounted on. If this is
the case this function will return the wrong values.
Coordinate System:
All translations and rotations are in the coordinate frame of the Robot. The zero point is in the center of the
base of the Robot. The x-axis points forward, the z-axis points up and the y-axis forms a right-handed
coordinate system
Args:
mj_model (mujoco.MjModel):
mujoco MjModel of the robot-only model
mj_data (mujoco.MjData):
mujoco MjData object generated from the model
desired_position (numpy.ndarray, (3,)):
The desired position of the selected link.
desired_rotation (optional, numpy.array, (3,3)):
The desired rotation of the selected link.
initial_q (numpy.ndarray, None):
The initial configuration of the algorithm, if set to None it will take the initial configuration of the
mj_data.
link (str, "ee"):
Link for which the inverse kinematics is calculated. When using the iiwas the choices are
["1", "2", "3", "4", "5", "6", "7", "ee"]. When using planar the choices are ["1", "2", "3", "ee"]
"""
q_init = np.zeros(mj_model.nq)
if initial_q is None:
q_init = mj_data.qpos
else:
q_init[:initial_q.size] = initial_q
q_l = mj_model.jnt_range[:, 0]
q_h = mj_model.jnt_range[:, 1]
lower_limit = (q_l + q_h) / 2 - 0.95 * (q_h - q_l) / 2
upper_limit = (q_l + q_h) / 2 + 0.95 * (q_h - q_l) / 2
desired_quat = None
if desired_rotation is not None:
desired_quat = np.zeros(4)
mujoco.mju_mat2Quat(desired_quat, desired_rotation.reshape(-1, 1))
return _mujoco_clik(desired_position, desired_quat, q_init, link_to_xml_name(mj_model, link), mj_model,
mj_data, lower_limit, upper_limit)
def jacobian(mj_model, mj_data, q, link="ee"):
"""
Compute the Jacobian of the robots.
IMPORTANT:
For the iiwa we assume that the universal joint at the end of the end-effector always leaves the mallet
parallel to the table and facing down. This assumption only makes sense for a subset of robot configurations
where the mallet can be parallel to the table without colliding with the rod it is mounted on. If this is the
case this function will return the wrong values.
Coordinate System:
All translations and rotations are in the coordinate frame of the Robot. The zero point is in the center of the
base of the Robot. The x-axis points forward, the z-axis points up and the y-axis forms a right-handed
coordinate system
Args:
mj_model (mujoco.MjModel):
mujoco MjModel of the robot-only model
mj_data (mujoco.MjData):
mujoco MjData object generated from the model
q (numpy.ndarray):
joint configuration for which the forward kinematics are computed
link (string, "ee"):
Link for which the forward kinematics is calculated. When using the iiwas the choices are
["1", "2", "3", "4", "5", "6", "7", "ee"]. When using planar the choices are ["1", "2", "3", "ee"]
Returns
-------
numpy.ndarray, (6, num_joints):
The Jacobian matrix for the robot kinematics.
"""
return _mujoco_jac(q, link_to_xml_name(mj_model, link), mj_model, mj_data)
def link_to_xml_name(mj_model, link):
try:
mj_model.body('iiwa_1/base')
link_to_frame_idx = {
"1": "iiwa_1/link_1",
"2": "iiwa_1/link_2",
"3": "iiwa_1/link_3",
"4": "iiwa_1/link_4",
"5": "iiwa_1/link_5",
"6": "iiwa_1/link_6",
"7": "iiwa_1/link_7",
"ee": "iiwa_1/striker_joint_link",
}
except:
link_to_frame_idx = {
"1": "planar_robot_1/body_1",
"2": "planar_robot_1/body_2",
"3": "planar_robot_1/body_3",
"ee": "planar_robot_1/body_ee",
}
return link_to_frame_idx[link]
def _mujoco_fk(q, name, model, data):
data.qpos[:len(q)] = q
mujoco.mj_fwdPosition(model, data)
return data.body(name).xpos.copy(), data.body(name).xmat.reshape(3, 3).copy()
def _mujoco_jac(q, name, model, data):
data.qpos[:len(q)] = q
dtype = data.qpos.dtype
jac = np.empty((6, model.nv), dtype=dtype)
jac_pos, jac_rot = jac[:3], jac[3:]
mujoco.mj_fwdPosition(model, data)
mujoco.mj_jacBody(model, data, jac_pos, jac_rot, model.body(name).id)
return jac
def _mujoco_clik(desired_pos, desired_quat, initial_q, name, model, data, lower_limit, upper_limit):
IT_MAX = 1000
eps = 1e-4
damp = 1e-3
progress_thresh = 20.0
max_update_norm = 0.1
rot_weight = 1
i = 0
dtype = data.qpos.dtype
data.qpos = initial_q
neg_x_quat = np.empty(4, dtype=dtype)
error_x_quat = np.empty(4, dtype=dtype)
if desired_pos is not None and desired_quat is not None:
jac = np.empty((6, model.nv), dtype=dtype)
err = np.empty(6, dtype=dtype)
jac_pos, jac_rot = jac[:3], jac[3:]
err_pos, err_rot = err[:3], err[3:]
else:
jac = np.empty((3, model.nv), dtype=dtype)
err = np.empty(3, dtype=dtype)
if desired_pos is not None:
jac_pos, jac_rot = jac, None
err_pos, err_rot = err, None
elif desired_quat is not None:
jac_pos, jac_rot = None, jac
err_pos, err_rot = None, err
else:
raise ValueError("Desired Position and desired rotation is None, cannot compute inverse kinematics")
while True:
# forward kinematics
mujoco.mj_fwdPosition(model, data)
x_pos = data.body(name).xpos
x_quat = data.body(name).xquat
error_norm = 0
if desired_pos is not None:
err_pos[:] = desired_pos - x_pos
error_norm += np.linalg.norm(err_pos)
if desired_quat is not None:
mujoco.mju_negQuat(neg_x_quat, x_quat)
mujoco.mju_mulQuat(error_x_quat, desired_quat, neg_x_quat)
mujoco.mju_quat2Vel(err_rot, error_x_quat, 1)
error_norm += np.linalg.norm(err_rot) * rot_weight
if error_norm < eps:
success = True
break
if i >= IT_MAX:
success = False
break
mujoco.mj_jacBody(model, data, jac_pos, jac_rot, model.body(name).id)
hess_approx = jac.T.dot(jac)
joint_delta = jac.T.dot(err)
hess_approx += np.eye(hess_approx.shape[0]) * damp
update_joints = np.linalg.solve(hess_approx, joint_delta)
update_norm = np.linalg.norm(update_joints)
# Check whether we are still making enough progress, and halt if not.
progress_criterion = error_norm / update_norm
if progress_criterion > progress_thresh:
success = False
break
if update_norm > max_update_norm:
update_joints *= max_update_norm / update_norm
mujoco.mj_integratePos(model, data.qpos, update_joints, 1)
data.qpos = np.clip(data.qpos, lower_limit, upper_limit)
i += 1
q_cur = data.qpos.copy()
return success, q_cur

View File

@ -0,0 +1,65 @@
import numpy as np
def robot_to_world(base_frame, translation, rotation=None):
"""
Transform position or rotation optional from the robot base frame to the world frame
Args
----
base_frame: numpy.ndarray, (4,4)
The transformation matrix from the world to robot base frame
translation: ndarray, (3,)
The 3D position to be transformed
rotation: optional, ndarray, (3, 3)
The rotation in the matrix form to be transformed
Returns
-------
position: ndarray (3,)
The transformed 3D position
rotation: ndarray (3, 3)
The transformed rotation in the matrix form
"""
target = np.eye(4)
target[:len(translation), 3] = translation
if rotation is not None:
target[:3, :3] = rotation
target_frame = base_frame @ target
return target_frame[:len(translation), 3], target_frame[:3, :3]
def world_to_robot(base_frame, translation, rotation=None):
"""
Transfrom position and rotation (optional) from the world frame to the robot's base frame
Args
----
base_frame: ndarray, (4,4)
The transformation matrix from the world to robot base frame
translation: ndarray, (3,)
The 3D position to be transformed
rotation: optional, ndarray, (3, 3)
The rotation in the matrix form to be tranformed
Returns
-------
position: ndarray, (3,)
The transformed 3D position
rotation: ndarray, (3, 3)
The transformed rotation in the matrix form
"""
target = np.eye(4)
target[:len(translation), 3] = translation
if rotation is not None:
target[:3, :3] = rotation
target_frame = np.linalg.inv(base_frame) @ target
return target_frame[:len(translation), 3], target_frame[:3, :3]

View File

@ -0,0 +1,120 @@
import numpy as np
from fancy_gym.envs.mujoco.air_hockey.utils.kinematics import forward_kinematics
class UniversalJointPlugin:
def __init__(self, env_model, env_data, env_info):
self.env_info = env_info
self.env_model = env_model
self.env_data = env_data
self.Kp = 20
self.Kd = 0.31
self.universal_joint_ids = []
self.universal_joint_ctrl_ids = []
self.universal_joint_ids += [env_model.joint("iiwa_1/striker_joint_1").id,
env_model.joint("iiwa_1/striker_joint_2").id]
self.universal_joint_ctrl_ids += [env_model.actuator("iiwa_1/striker_joint_1").id,
env_model.actuator("iiwa_1/striker_joint_2").id]
action_spec = ["iiwa_1/joint_1", "iiwa_1/joint_2", "iiwa_1/joint_3", "iiwa_1/joint_4", "iiwa_1/joint_5",
"iiwa_1/joint_6", "iiwa_1/joint_7"]
if self.env_info['n_agents'] >= 2:
self.universal_joint_ids += [env_model.joint("iiwa_2/striker_joint_1").id,
env_model.joint("iiwa_2/striker_joint_2").id]
self.universal_joint_ctrl_ids += [env_model.actuator("iiwa_2/striker_joint_1").id,
env_model.actuator("iiwa_2/striker_joint_2").id]
action_spec += ["iiwa_2/joint_1", "iiwa_2/joint_2", "iiwa_2/joint_3", "iiwa_2/joint_4", "iiwa_2/joint_5",
"iiwa_2/joint_6", "iiwa_2/joint_7"]
self.actuator_joint_ids = [self.env_model.joint(name).id for name in action_spec]
self.filter_ratio = 0.273
self.u_joint_pos_des = np.zeros(2 * self.env_info['n_agents'])
self.u_joint_pos_prev = None
self.u_joint_vel_prev = np.zeros(2 * self.env_info['n_agents'])
def reset(self):
self.u_joint_pos_prev = None
self._control_universal_joint()
for i in range(self.env_info['n_agents']):
self.u_joint_vel_prev = self.env_data.qvel[self.universal_joint_ids]
self.env_data.qpos[self.universal_joint_ctrl_ids] = self.u_joint_pos_des
def update(self):
self._control_universal_joint()
def _control_universal_joint(self):
self._compute_universal_joint()
self.u_joint_pos_prev = self.env_data.qpos[self.universal_joint_ids]
self.u_joint_vel_prev = self.filter_ratio * self.env_data.qvel[self.universal_joint_ids] + \
(1 - self.filter_ratio) * self.u_joint_vel_prev
Kp = 4
Kd = 0.31
torque = Kp * (self.u_joint_pos_des - self.u_joint_pos_prev) - Kd * self.u_joint_vel_prev
self.env_data.ctrl[self.universal_joint_ctrl_ids] = torque
def _compute_universal_joint(self):
for i in range(self.env_info['n_agents']):
q = self.env_data.qpos[self.actuator_joint_ids[i * 7: (i + 1) * 7]]
# Have to exclude the puck joints
pos, rot_mat = forward_kinematics(self.env_info['robot']['robot_model'],
self.env_info['robot']['robot_data'], q)
v_x = rot_mat[:, 0]
v_y = rot_mat[:, 1]
# The desired position of the x-axis is the cross product of the desired z (0, 0, 1).T
# and the current y-axis. (0, 0, 1).T x v_y
x_desired = np.array([-v_y[1], v_y[0], 0])
# Find the signed angle from the current to the desired x-axis around the y-axis
# https://stackoverflow.com/questions/5188561/signed-angle-between-two-3d-vectors-with-same-origin-within-the-same-plane
q1 = np.arctan2(self._cross_3d(v_x, x_desired) @ v_y, v_x @ x_desired)
if self.u_joint_pos_prev is not None:
if q1 - self.u_joint_pos_prev[0] > np.pi:
q1 -= np.pi * 2
elif q1 - self.u_joint_pos_prev[0] < -np.pi:
q1 += np.pi * 2
# Rotate the X axis by the calculated amount
w = np.array([[0, -v_y[2], v_y[1]],
[v_y[2], 0, -v_y[0]],
[-v_y[1], v_y[0], 0]])
r = np.eye(3) + w * np.sin(q1) + w ** 2 * (1 - np.cos(q1))
v_x_rotated = r @ v_x
# The desired position of the y-axis is the negative cross product of the desired z (0, 0, 1).T and the current
# x-axis, which is already rotated around y. The negative is there because the x-axis is flipped.
# -((0, 0, 1).T x v_x))
y_desired = np.array([v_x_rotated[1], - v_x_rotated[0], 0])
# Find the signed angle from the current to the desired y-axis around the new rotated x-axis
q2 = np.arctan2(self._cross_3d(v_y, y_desired) @ v_x_rotated, v_y @ y_desired)
if self.u_joint_pos_prev is not None:
if q2 - self.u_joint_pos_prev[1] > np.pi:
q2 -= np.pi * 2
elif q2 - self.u_joint_pos_prev[1] < -np.pi:
q2 += np.pi * 2
alpha_y = np.minimum(np.maximum(q1, -np.pi / 2 * 0.95), np.pi / 2 * 0.95)
alpha_x = np.minimum(np.maximum(q2, -np.pi / 2 * 0.95), np.pi / 2 * 0.95)
if self.u_joint_pos_prev is None:
self.u_joint_pos_des[i * 2: i * 2 + 2] = np.array([alpha_y, alpha_x])
else:
self.u_joint_pos_des[i * 2: i * 2 + 2] += np.minimum(np.maximum(
10 * (np.array([alpha_y, alpha_x]) - self.u_joint_pos_des[i * 2: i * 2 + 2]),
-np.pi * 0.01), np.pi * 0.01)
self.u_joint_pos_des[i * 2: i * 2 + 2] = np.array([alpha_y, alpha_x])
return self.u_joint_pos_des
def _cross_3d(self, a, b):
return np.array([a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2], a[0] * b[1] - a[1] * b[0]])

View File

@ -7,11 +7,12 @@ from setuptools import setup, find_packages
# Environment-specific dependencies for dmc and metaworld # Environment-specific dependencies for dmc and metaworld
extras = { extras = {
'dmc': ['shimmy[dm-control]', 'Shimmy==1.0.0'], 'dmc': ['shimmy[dm-control]', 'Shimmy==1.0.0'],
'metaworld': ['metaworld @ git+https://github.com/Farama-Foundation/Metaworld.git@d155d0051630bb365ea6a824e02c66c068947439#egg=metaworld'], 'metaworld': ['mujoco==2.3.3', 'metaworld @ git+https://github.com/Farama-Foundation/Metaworld.git@d155d0051630bb365ea6a824e02c66c068947439#egg=metaworld'],
'box2d': ['gymnasium[box2d]>=0.26.0'], 'box2d': ['gymnasium[box2d]>=0.26.0'],
'mujoco': ['mujoco==2.3.3', 'gymnasium[mujoco]>0.26.0'], 'mujoco': ['mujoco==2.3.3', 'gymnasium[mujoco]>0.26.0'],
'mujoco-legacy': ['mujoco-py >=2.1,<2.2', 'cython<3'], 'mujoco-legacy': ['mujoco-py >=2.1,<2.2', 'cython<3'],
'jax': ["jax >=0.4.0", "jaxlib >=0.4.0"], 'jax': ["jax >=0.4.0", "jaxlib >=0.4.0"],
'mushroom-rl': ['mushroom-rl'],
} }
# All dependencies # All dependencies

View File

@ -41,7 +41,7 @@ class ToyEnv(gym.Env):
obs, reward, terminated, truncated, info = np.array([-1]), 1, False, False, {} obs, reward, terminated, truncated, info = np.array([-1]), 1, False, False, {}
return obs, reward, terminated, truncated, info return obs, reward, terminated, truncated, info
def render(self, mode="human"): def render(self):
pass pass

View File

@ -33,7 +33,7 @@ class ToyEnv(gym.Env):
obs, reward, terminated, truncated, info = np.array([-1]), 1, False, False, {} obs, reward, terminated, truncated, info = np.array([-1]), 1, False, False, {}
return obs, reward, terminated, truncated, info return obs, reward, terminated, truncated, info
def render(self, mode="human"): def render(self):
pass pass

View File

@ -37,7 +37,7 @@ class ToyEnv(gym.Env):
obs, reward, terminated, truncated, info = np.array([-1]), 1, False, False, {} obs, reward, terminated, truncated, info = np.array([-1]), 1, False, False, {}
return obs, reward, terminated, truncated, info return obs, reward, terminated, truncated, info
def render(self, mode="human"): def render(self):
pass pass