Fix: TimeAwareObservation did not support float64 and tried to forbidden access private attribute.

This commit is contained in:
Dominik Moritz Roth 2023-05-19 13:59:54 +02:00
parent 07de655025
commit bf3ed8a06c

View File

@ -1,20 +1,65 @@
from gymnasium.spaces import Box
import gymnasium as gym
import numpy as np
class TimeAwareObservation(gym.wrappers.TimeAwareObservation):
class TimeAwareObservation(gym.ObservationWrapper, gym.utils.RecordConstructorArgs):
"""Augment the observation with the current time step in the episode.
def __init__(self, env: gym.Env):
super().__init__(env)
self._max_episode_steps = env.spec.max_episode_steps
The observation space of the wrapped environment is assumed to be a flat :class:`Box`.
In particular, pixel observations are not supported. This wrapper will append the current timestep within the current episode to the observation.
The timestep will be indicated as a number between 0 and 1.
"""
def __init__(self, env: gym.Env, enforce_dtype_float32=False):
"""Initialize :class:`TimeAwareObservation` that requires an environment with a flat :class:`Box` observation space.
Args:
env: The environment to apply the wrapper
"""
gym.utils.RecordConstructorArgs.__init__(self)
gym.ObservationWrapper.__init__(self, env)
assert isinstance(env.observation_space, Box)
if enforce_dtype_float32:
assert env.observation_space.dtype == np.float32,
'TimeAwareObservation was given an environment with a dtype!=np.float32 ('+str(env.observation_space.dtype)+'). This requirement can be removed by setting enforce_dtype_float32=False.'
dtype = env.observation_space.dtype
low = np.append(self.observation_space.low, 0.0)
high = np.append(self.observation_space.high, np.inf)
self.observation_space = Box(low, high, dtype=dtype)
self.is_vector_env = getattr(env, "is_vector_env", False)
def observation(self, observation):
"""Adds to the observation with the current time step normalized with max steps.
"""Adds to the observation with the current time step.
Args:
observation: The observation to add the time step to
Returns:
The observation with the time step appended to
The observation with the time step appended to (relative to total number of steps)
"""
return np.append(observation, self.t / self._max_episode_steps)
return np.append(observation, self.t / getattr(self.env, '_max_episode_steps')
def step(self, action):
"""Steps through the environment, incrementing the time step.
Args:
action: The action to take
Returns:
The environment's step using the action.
"""
self.t += 1
return super().step(action)
def reset(self, **kwargs):
"""Reset the environment setting the time to zero.
Args:
**kwargs: Kwargs to apply to env.reset()
Returns:
The reset environment
"""
self.t=0
return super().reset(**kwargs)