Fix: TimeAwareObservation did not support float64 and tried to forbidden access private attribute.
This commit is contained in:
parent
07de655025
commit
bf3ed8a06c
@ -1,20 +1,65 @@
|
|||||||
|
from gymnasium.spaces import Box
|
||||||
import gymnasium as gym
|
import gymnasium as gym
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
class TimeAwareObservation(gym.wrappers.TimeAwareObservation):
|
class TimeAwareObservation(gym.ObservationWrapper, gym.utils.RecordConstructorArgs):
|
||||||
|
"""Augment the observation with the current time step in the episode.
|
||||||
|
|
||||||
def __init__(self, env: gym.Env):
|
The observation space of the wrapped environment is assumed to be a flat :class:`Box`.
|
||||||
super().__init__(env)
|
In particular, pixel observations are not supported. This wrapper will append the current timestep within the current episode to the observation.
|
||||||
self._max_episode_steps = env.spec.max_episode_steps
|
The timestep will be indicated as a number between 0 and 1.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, env: gym.Env, enforce_dtype_float32=False):
|
||||||
|
"""Initialize :class:`TimeAwareObservation` that requires an environment with a flat :class:`Box` observation space.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
env: The environment to apply the wrapper
|
||||||
|
"""
|
||||||
|
gym.utils.RecordConstructorArgs.__init__(self)
|
||||||
|
gym.ObservationWrapper.__init__(self, env)
|
||||||
|
assert isinstance(env.observation_space, Box)
|
||||||
|
if enforce_dtype_float32:
|
||||||
|
assert env.observation_space.dtype == np.float32,
|
||||||
|
'TimeAwareObservation was given an environment with a dtype!=np.float32 ('+str(env.observation_space.dtype)+'). This requirement can be removed by setting enforce_dtype_float32=False.'
|
||||||
|
dtype = env.observation_space.dtype
|
||||||
|
low = np.append(self.observation_space.low, 0.0)
|
||||||
|
high = np.append(self.observation_space.high, np.inf)
|
||||||
|
self.observation_space = Box(low, high, dtype=dtype)
|
||||||
|
self.is_vector_env = getattr(env, "is_vector_env", False)
|
||||||
|
|
||||||
def observation(self, observation):
|
def observation(self, observation):
|
||||||
"""Adds to the observation with the current time step normalized with max steps.
|
"""Adds to the observation with the current time step.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
observation: The observation to add the time step to
|
observation: The observation to add the time step to
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
The observation with the time step appended to
|
The observation with the time step appended to (relative to total number of steps)
|
||||||
"""
|
"""
|
||||||
return np.append(observation, self.t / self._max_episode_steps)
|
return np.append(observation, self.t / getattr(self.env, '_max_episode_steps')
|
||||||
|
|
||||||
|
def step(self, action):
|
||||||
|
"""Steps through the environment, incrementing the time step.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
action: The action to take
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The environment's step using the action.
|
||||||
|
"""
|
||||||
|
self.t += 1
|
||||||
|
return super().step(action)
|
||||||
|
|
||||||
|
def reset(self, **kwargs):
|
||||||
|
"""Reset the environment setting the time to zero.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
**kwargs: Kwargs to apply to env.reset()
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The reset environment
|
||||||
|
"""
|
||||||
|
self.t=0
|
||||||
|
return super().reset(**kwargs)
|
||||||
|
Loading…
Reference in New Issue
Block a user