Merge branch 'master' into tt_cluster_debug
# Conflicts: # fancy_gym/black_box/black_box_wrapper.py # fancy_gym/envs/__init__.py # fancy_gym/examples/examples_movement_primitives.py
This commit is contained in:
commit
c242c32a41
@ -2,7 +2,6 @@ from typing import Tuple, Optional, Callable
|
||||
|
||||
import gym
|
||||
import numpy as np
|
||||
import torch
|
||||
from gym import spaces
|
||||
from mp_pytorch.mp.mp_interfaces import MPInterface
|
||||
|
||||
@ -23,8 +22,8 @@ class BlackBoxWrapper(gym.ObservationWrapper):
|
||||
replanning_schedule: Optional[
|
||||
Callable[[np.ndarray, np.ndarray, np.ndarray, np.ndarray, int], bool]] = None,
|
||||
reward_aggregation: Callable[[np.ndarray], float] = np.sum,
|
||||
max_planning_times = None,
|
||||
desired_conditioning: bool = False
|
||||
max_planning_times: int = None,
|
||||
condition_on_desired: bool = False
|
||||
):
|
||||
"""
|
||||
gym.Wrapper for leveraging a black box approach with a trajectory generator.
|
||||
@ -59,10 +58,8 @@ class BlackBoxWrapper(gym.ObservationWrapper):
|
||||
# reward computation
|
||||
self.reward_aggregation = reward_aggregation
|
||||
|
||||
# self.traj_gen.basis_gn.show_basis(plot=True)
|
||||
# spaces
|
||||
self.return_context_observation = not (learn_sub_trajectories or self.do_replanning)
|
||||
# self.return_context_observation = True
|
||||
self.traj_gen_action_space = self._get_traj_gen_action_space()
|
||||
self.action_space = self._get_action_space()
|
||||
|
||||
@ -81,14 +78,12 @@ class BlackBoxWrapper(gym.ObservationWrapper):
|
||||
self.verbose = verbose
|
||||
|
||||
# condition value
|
||||
self.desired_conditioning = False
|
||||
self.condition_on_desired = condition_on_desired
|
||||
self.condition_pos = None
|
||||
self.condition_vel = None
|
||||
|
||||
self.max_planning_times = max_planning_times
|
||||
self.plan_counts = 0
|
||||
|
||||
self.tau_first_prediction = None
|
||||
self.plan_steps = 0
|
||||
|
||||
def observation(self, observation):
|
||||
# return context space if we are
|
||||
@ -111,16 +106,11 @@ class BlackBoxWrapper(gym.ObservationWrapper):
|
||||
bc_time = np.array(0 if not self.do_replanning else self.current_traj_steps * self.dt)
|
||||
# TODO we could think about initializing with the previous desired value in order to have a smooth transition
|
||||
# at least from the planning point of view.
|
||||
# self.traj_gen.set_boundary_conditions(bc_time, self.current_pos, self.current_vel)
|
||||
if self.current_traj_steps == 0:
|
||||
self.condition_pos = self.current_pos
|
||||
self.condition_vel = self.current_vel
|
||||
|
||||
bc_time = torch.as_tensor(bc_time, dtype=torch.float32)
|
||||
self.condition_pos = torch.as_tensor(self.condition_pos, dtype=torch.float32)
|
||||
self.condition_vel = torch.as_tensor(self.condition_vel, dtype=torch.float32)
|
||||
self.traj_gen.set_boundary_conditions(bc_time, self.condition_pos, self.condition_vel)
|
||||
# self.traj_gen.set_duration(duration, self.dt)
|
||||
condition_pos = self.condition_pos if self.condition_pos is not None else self.current_pos
|
||||
condition_vel = self.condition_vel if self.condition_vel is not None else self.current_vel
|
||||
|
||||
self.traj_gen.set_boundary_conditions(bc_time, condition_pos, condition_vel)
|
||||
self.traj_gen.set_duration(duration, self.dt)
|
||||
# traj_dict = self.traj_gen.get_trajs(get_pos=True, get_vel=True)
|
||||
position = get_numpy(self.traj_gen.get_traj_pos())
|
||||
@ -163,9 +153,6 @@ class BlackBoxWrapper(gym.ObservationWrapper):
|
||||
|
||||
def step(self, action: np.ndarray):
|
||||
""" This function generates a trajectory based on a MP and then does the usual loop over reset and step"""
|
||||
# time_is_valid = self.env.check_time_validity(action)
|
||||
#
|
||||
# if time_valid:
|
||||
|
||||
# TODO remove this part, right now only needed for beer pong
|
||||
# mp_params, env_spec_params, proceed = self.env.episode_callback(action, self.traj_gen)
|
||||
@ -182,15 +169,13 @@ class BlackBoxWrapper(gym.ObservationWrapper):
|
||||
infos = dict()
|
||||
done = False
|
||||
|
||||
if self.verbose >= 2:
|
||||
desired_pos_traj = []
|
||||
desired_vel_traj = []
|
||||
pos_traj = []
|
||||
vel_traj = []
|
||||
|
||||
|
||||
if traj_is_valid:
|
||||
self.plan_counts += 1
|
||||
self.plan_steps += 1
|
||||
for t, (pos, vel) in enumerate(zip(position, velocity)):
|
||||
current_pos = self.current_pos
|
||||
current_vel = self.current_vel
|
||||
step_action = self.tracking_controller.get_action(pos, vel, self.current_pos, self.current_vel)
|
||||
c_action = np.clip(step_action, self.env.action_space.low, self.env.action_space.high)
|
||||
obs, c_reward, done, info = self.env.step(c_action)
|
||||
@ -205,42 +190,29 @@ class BlackBoxWrapper(gym.ObservationWrapper):
|
||||
elems[t] = v
|
||||
infos[k] = elems
|
||||
|
||||
if self.verbose >= 2:
|
||||
desired_pos_traj.append(pos)
|
||||
desired_vel_traj.append(vel)
|
||||
pos_traj.append(self.current_pos)
|
||||
vel_traj.append(self.current_vel)
|
||||
|
||||
if self.render_kwargs:
|
||||
self.env.render(**self.render_kwargs)
|
||||
|
||||
if done or (self.replanning_schedule(self.current_pos, self.current_vel, obs, c_action,
|
||||
t + 1 + self.current_traj_steps)
|
||||
and self.max_planning_times is not None and self.plan_counts < self.max_planning_times):
|
||||
if done or self.replanning_schedule(current_pos, current_vel, obs, c_action,
|
||||
t + 1 + self.current_traj_steps):
|
||||
|
||||
# if self.max_planning_times is not None and self.plan_counts >= self.max_planning_times:
|
||||
# continue
|
||||
if self.max_planning_times is not None and self.plan_steps >= self.max_planning_times:
|
||||
continue
|
||||
|
||||
self.condition_pos = pos if self.desired_conditioning else self.current_pos
|
||||
self.condition_vel = vel if self.desired_conditioning else self.current_vel
|
||||
self.condition_pos = pos if self.condition_on_desired else None
|
||||
self.condition_vel = vel if self.condition_on_desired else None
|
||||
|
||||
break
|
||||
|
||||
infos.update({k: v[:t+1] for k, v in infos.items()})
|
||||
self.current_traj_steps += t + 1
|
||||
|
||||
if self.verbose >= 2:
|
||||
infos['desired_pos'] = position[:t+1]
|
||||
infos['desired_vel'] = velocity[:t+1]
|
||||
infos['current_pos'] = self.current_pos
|
||||
infos['current_vel'] = self.current_vel
|
||||
infos['step_actions'] = actions[:t + 1]
|
||||
infos['step_observations'] = observations[:t + 1]
|
||||
infos['step_rewards'] = rewards[:t + 1]
|
||||
infos['desired_pos_traj'] = np.array(desired_pos_traj)
|
||||
infos['desired_vel_traj'] = np.array(desired_vel_traj)
|
||||
infos['pos_traj'] = np.array(pos_traj)
|
||||
infos['vel_traj'] = np.array(vel_traj)
|
||||
if self.verbose >= 2:
|
||||
infos['positions'] = position
|
||||
infos['velocities'] = velocity
|
||||
infos['step_actions'] = actions[:t + 1]
|
||||
infos['step_observations'] = observations[:t + 1]
|
||||
infos['step_rewards'] = rewards[:t + 1]
|
||||
|
||||
infos['trajectory_length'] = t + 1
|
||||
trajectory_return = self.reward_aggregation(rewards[:t + 1])
|
||||
@ -256,7 +228,6 @@ class BlackBoxWrapper(gym.ObservationWrapper):
|
||||
|
||||
def reset(self, *, seed: Optional[int] = None, return_info: bool = False, options: Optional[dict] = None):
|
||||
self.current_traj_steps = 0
|
||||
self.plan_counts = 0
|
||||
self.tau_first_prediction = None
|
||||
self.plan_steps = 0
|
||||
self.traj_gen.reset()
|
||||
return super(BlackBoxWrapper, self).reset()
|
||||
|
@ -28,9 +28,7 @@ DEFAULT_BB_DICT_ProMP = {
|
||||
'trajectory_generator_type': 'promp'
|
||||
},
|
||||
"phase_generator_kwargs": {
|
||||
'phase_generator_type': 'linear',
|
||||
'learn_tau': False,
|
||||
'learn_delay': False,
|
||||
'phase_generator_type': 'linear'
|
||||
},
|
||||
"controller_kwargs": {
|
||||
'controller_type': 'motor',
|
||||
@ -77,8 +75,6 @@ DEFAULT_BB_DICT_ProDMP = {
|
||||
},
|
||||
"phase_generator_kwargs": {
|
||||
'phase_generator_type': 'exp',
|
||||
'learn_delay': False,
|
||||
'learn_tau': False,
|
||||
},
|
||||
"controller_kwargs": {
|
||||
'controller_type': 'motor',
|
||||
@ -91,9 +87,6 @@ DEFAULT_BB_DICT_ProDMP = {
|
||||
'num_basis': 5,
|
||||
},
|
||||
"black_box_kwargs": {
|
||||
'replanning_schedule': None,
|
||||
'max_planning_times': None,
|
||||
'verbose': 2
|
||||
}
|
||||
}
|
||||
|
||||
@ -512,24 +505,22 @@ for _v in _versions:
|
||||
|
||||
for _v in _versions:
|
||||
_name = _v.split("-")
|
||||
_env_id = f'{_name[0]}ProDMP-{_name[1]}'
|
||||
_env_id = f'{_name[0]}ReplanProDMP-{_name[1]}'
|
||||
kwargs_dict_box_pushing_prodmp = deepcopy(DEFAULT_BB_DICT_ProDMP)
|
||||
kwargs_dict_box_pushing_prodmp['wrappers'].append(mujoco.box_pushing.MPWrapper)
|
||||
kwargs_dict_box_pushing_prodmp['name'] = _v
|
||||
kwargs_dict_box_pushing_prodmp['controller_kwargs']['p_gains'] = 0.01 * np.array([120., 120., 120., 120., 50., 30., 10.])
|
||||
kwargs_dict_box_pushing_prodmp['controller_kwargs']['d_gains'] = 0.01 * np.array([10., 10., 10., 10., 6., 5., 3.])
|
||||
# kwargs_dict_box_pushing_prodmp['trajectory_generator_kwargs']['weights_scale'] = np.array([3.4944e+01, 4.3734e+01, 9.6711e+01, 2.4429e+02, 5.8272e+02])
|
||||
# kwargs_dict_box_pushing_prodmp['trajectory_generator_kwargs']['goal_scale'] = 3.1264e-01
|
||||
kwargs_dict_box_pushing_prodmp['trajectory_generator_kwargs']['weights_scale'] = 0.3
|
||||
kwargs_dict_box_pushing_prodmp['trajectory_generator_kwargs']['goal_scale'] = 0.3
|
||||
kwargs_dict_box_pushing_prodmp['trajectory_generator_kwargs']['auto_scale_basis'] = True
|
||||
kwargs_dict_box_pushing_prodmp['trajectory_generator_kwargs']['goal_offset'] = 1.0
|
||||
kwargs_dict_box_pushing_prodmp['basis_generator_kwargs']['num_basis'] = 4
|
||||
kwargs_dict_box_pushing_prodmp['basis_generator_kwargs']['alpha'] = 10.
|
||||
kwargs_dict_box_pushing_prodmp['basis_generator_kwargs']['basis_bandwidth_factor'] = 3 # 3.5, 4 to try
|
||||
kwargs_dict_box_pushing_prodmp['basis_generator_kwargs']['basis_bandwidth_factor'] = 3
|
||||
kwargs_dict_box_pushing_prodmp['phase_generator_kwargs']['alpha_phase'] = 3
|
||||
kwargs_dict_box_pushing_prodmp['black_box_kwargs']['max_planning_times'] = 4
|
||||
kwargs_dict_box_pushing_prodmp['black_box_kwargs']['replanning_schedule'] = lambda pos, vel, obs, action, t : t % 25 == 0
|
||||
kwargs_dict_box_pushing_prodmp['black_box_kwargs']['condition_on_desired'] = True
|
||||
register(
|
||||
id=_env_id,
|
||||
entry_point='fancy_gym.utils.make_env_helpers:make_bb_env_helper',
|
||||
|
@ -219,6 +219,8 @@ class BoxPushingEnvBase(MujocoEnv, utils.EzPickle):
|
||||
q_old = q
|
||||
q = q + dt * qd_d
|
||||
q = np.clip(q, q_min, q_max)
|
||||
self.data.qpos[:7] = q
|
||||
mujoco.mj_forward(self.model, self.data)
|
||||
current_cart_pos = self.data.body("tcp").xpos.copy()
|
||||
current_cart_quat = self.data.body("tcp").xquat.copy()
|
||||
|
||||
@ -247,8 +249,10 @@ class BoxPushingEnvBase(MujocoEnv, utils.EzPickle):
|
||||
### get Jacobian by mujoco
|
||||
self.data.qpos[:7] = q
|
||||
mujoco.mj_forward(self.model, self.data)
|
||||
|
||||
jacp = self.get_body_jacp("tcp")[:, :7].copy()
|
||||
jacr = self.get_body_jacr("tcp")[:, :7].copy()
|
||||
|
||||
J = np.concatenate((jacp, jacr), axis=0)
|
||||
|
||||
Jw = J.dot(w)
|
||||
@ -356,14 +360,3 @@ class BoxPushingTemporalSpatialSparse(BoxPushingEnvBase):
|
||||
reward += box_goal_pos_dist_reward + box_goal_rot_dist_reward
|
||||
|
||||
return reward
|
||||
|
||||
if __name__=="__main__":
|
||||
env = BoxPushingTemporalSpatialSparse(frame_skip=10)
|
||||
env.reset()
|
||||
for i in range(10):
|
||||
env.reset()
|
||||
for _ in range(100):
|
||||
env.render("human")
|
||||
action = env.action_space.sample()
|
||||
obs, reward, done, info = env.step(action)
|
||||
print("info: {}".format(info))
|
||||
|
@ -1,38 +1,62 @@
|
||||
import fancy_gym
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
def plot_trajectory(traj):
|
||||
plt.figure()
|
||||
plt.plot(traj[:, 3])
|
||||
plt.legend()
|
||||
plt.show()
|
||||
|
||||
def run_replanning_envs(env_name="BoxPushingProDMP-v0", seed=1, iterations=1, render=True):
|
||||
def example_run_replanning_env(env_name="BoxPushingDenseReplanProDMP-v0", seed=1, iterations=1, render=False):
|
||||
env = fancy_gym.make(env_name, seed=seed)
|
||||
env.reset()
|
||||
for i in range(iterations):
|
||||
done = False
|
||||
desired_pos_traj = np.zeros((100, 7))
|
||||
desired_vel_traj = np.zeros((100, 7))
|
||||
real_pos_traj = np.zeros((100, 7))
|
||||
real_vel_traj = np.zeros((100, 7))
|
||||
t = 0
|
||||
while done is False:
|
||||
ac = env.action_space.sample()
|
||||
obs, reward, done, info = env.step(ac)
|
||||
desired_pos_traj[t: t + 25, :] = info['desired_pos']
|
||||
desired_vel_traj[t: t + 25, :] = info['desired_vel']
|
||||
# real_pos_traj.append(info['current_pos'])
|
||||
# real_vel_traj.append(info['current_vel'])
|
||||
t += 25
|
||||
if render:
|
||||
env.render(mode="human")
|
||||
if done:
|
||||
env.reset()
|
||||
plot_trajectory(desired_pos_traj)
|
||||
env.close()
|
||||
del env
|
||||
|
||||
def example_custom_replanning_envs(seed=0, iteration=100, render=True):
|
||||
# id for a step-based environment
|
||||
base_env_id = "BoxPushingDense-v0"
|
||||
|
||||
wrappers = [fancy_gym.envs.mujoco.box_pushing.mp_wrapper.MPWrapper]
|
||||
|
||||
trajectory_generator_kwargs = {'trajectory_generator_type': 'prodmp',
|
||||
'weight_scale': 1}
|
||||
phase_generator_kwargs = {'phase_generator_type': 'exp'}
|
||||
controller_kwargs = {'controller_type': 'velocity'}
|
||||
basis_generator_kwargs = {'basis_generator_type': 'prodmp',
|
||||
'num_basis': 5}
|
||||
|
||||
# max_planning_times: the maximum number of plans can be generated
|
||||
# replanning_schedule: the trigger for replanning
|
||||
# condition_on_desired: use desired state as the boundary condition for the next plan
|
||||
black_box_kwargs = {'max_planning_times': 4,
|
||||
'replanning_schedule': lambda pos, vel, obs, action, t: t % 25 == 0,
|
||||
'condition_on_desired': True}
|
||||
|
||||
env = fancy_gym.make_bb(env_id=base_env_id, wrappers=wrappers, black_box_kwargs=black_box_kwargs,
|
||||
traj_gen_kwargs=trajectory_generator_kwargs, controller_kwargs=controller_kwargs,
|
||||
phase_kwargs=phase_generator_kwargs, basis_kwargs=basis_generator_kwargs,
|
||||
seed=seed)
|
||||
if render:
|
||||
env.render(mode="human")
|
||||
|
||||
obs = env.reset()
|
||||
|
||||
for i in range(iteration):
|
||||
ac = env.action_space.sample()
|
||||
obs, reward, done, info = env.step(ac)
|
||||
if done:
|
||||
env.reset()
|
||||
|
||||
env.close()
|
||||
del env
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_replanning_envs(env_name="BoxPushingDenseProDMP-v0", seed=1, iterations=1, render=False)
|
||||
# run a registered replanning environment
|
||||
example_run_replanning_env(env_name="BoxPushingDenseReplanProDMP-v0", seed=1, iterations=1, render=False)
|
||||
|
||||
# run a custom replanning environment
|
||||
example_custom_replanning_envs(seed=0, iteration=8, render=True)
|
@ -17,8 +17,6 @@ def example_mp(env_name="HoleReacherProMP-v0", seed=1, iterations=1, render=True
|
||||
# It takes care of seeding and enables the use of a variety of external environments using the gym interface.
|
||||
env = fancy_gym.make(env_name, seed)
|
||||
|
||||
# env.traj_gen.basis_gn.show_basis(plot=True)
|
||||
|
||||
returns = 0
|
||||
# env.render(mode=None)
|
||||
obs = env.reset()
|
||||
@ -40,22 +38,16 @@ def example_mp(env_name="HoleReacherProMP-v0", seed=1, iterations=1, render=True
|
||||
# Now the action space is not the raw action but the parametrization of the trajectory generator,
|
||||
# such as a ProMP
|
||||
ac = env.action_space.sample()
|
||||
# ac[0] = 0.6866657733917236
|
||||
# ac[1] = 0.08587364107370377
|
||||
# This executes a full trajectory and gives back the context (obs) of the last step in the trajectory, or the
|
||||
# full observation space of the last step, if replanning/sub-trajectory learning is used. The 'reward' is equal
|
||||
# to the return of a trajectory. Default is the sum over the step-wise rewards.
|
||||
print(f'target obs: {obs[-3:]}')
|
||||
obs, reward, done, info = env.step(ac)
|
||||
print(f'steps: {info["num_steps"][-1]}')
|
||||
# Aggregated returns
|
||||
returns += reward
|
||||
|
||||
if done:
|
||||
# print(reward)
|
||||
print(reward)
|
||||
obs = env.reset()
|
||||
print("=================New Episode======================")
|
||||
# print("steps: {}".format(info["num_steps"][-1]))
|
||||
|
||||
|
||||
def example_custom_mp(env_name="Reacher5dProMP-v0", seed=1, iterations=1, render=True):
|
||||
@ -165,19 +157,17 @@ def example_fully_custom_mp(seed=1, iterations=1, render=True):
|
||||
if __name__ == '__main__':
|
||||
render = True
|
||||
# DMP
|
||||
# example_mp("HoleReacherDMP-v0", seed=10, iterations=5, render=render)
|
||||
example_mp("HoleReacherDMP-v0", seed=10, iterations=5, render=render)
|
||||
|
||||
# ProMP
|
||||
# example_mp("HoleReacherProMP-v0", seed=10, iterations=5, render=render)
|
||||
# example_mp("BoxPushingTemporalSparseProMP-v0", seed=10, iterations=1, render=render)
|
||||
# example_mp("TableTennis4DProMP-v0", seed=10, iterations=10, render=True)
|
||||
example_mp("HoleReacherProMP-v0", seed=10, iterations=5, render=render)
|
||||
example_mp("BoxPushingTemporalSparseProMP-v0", seed=10, iterations=1, render=render)
|
||||
|
||||
# ProDMP
|
||||
# example_mp("BoxPushingDenseProDMP-v0", seed=10, iterations=16, render=render)
|
||||
example_mp("TableTennis4DProDMP-v0", seed=10, iterations=5000, render=render)
|
||||
example_mp("BoxPushingDenseReplanProDMP-v0", seed=10, iterations=4, render=render)
|
||||
|
||||
# Altered basis functions
|
||||
# obs1 = example_custom_mp("Reacher5dProMP-v0", seed=10, iterations=1, render=render)
|
||||
obs1 = example_custom_mp("Reacher5dProMP-v0", seed=10, iterations=1, render=render)
|
||||
|
||||
# Custom MP
|
||||
# example_fully_custom_mp(seed=10, iterations=1, render=render)
|
||||
example_fully_custom_mp(seed=10, iterations=1, render=render)
|
||||
|
2
setup.py
2
setup.py
@ -34,7 +34,7 @@ setup(
|
||||
],
|
||||
extras_require=extras,
|
||||
install_requires=[
|
||||
'gym[mujoco]<0.25.0,>=0.24.0',
|
||||
'gym[mujoco]<0.25.0,>=0.24.1',
|
||||
'mp_pytorch @ git+https://github.com/ALRhub/MP_PyTorch.git@main'
|
||||
],
|
||||
packages=[package for package in find_packages() if package.startswith("fancy_gym")],
|
||||
|
@ -67,28 +67,32 @@ def test_missing_wrapper(env_id: str):
|
||||
fancy_gym.make_bb(env_id, [], {}, {}, {}, {}, {})
|
||||
|
||||
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'dmp'])
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'dmp', 'prodmp'])
|
||||
def test_missing_local_state(mp_type: str):
|
||||
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
|
||||
|
||||
env = fancy_gym.make_bb('toy-v0', [RawInterfaceWrapper], {},
|
||||
{'trajectory_generator_type': mp_type},
|
||||
{'controller_type': 'motor'},
|
||||
{'phase_generator_type': 'exp'},
|
||||
{'basis_generator_type': 'rbf'})
|
||||
{'basis_generator_type': basis_generator_type})
|
||||
env.reset()
|
||||
with pytest.raises(NotImplementedError):
|
||||
env.step(env.action_space.sample())
|
||||
|
||||
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'dmp'])
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'dmp', 'prodmp'])
|
||||
@pytest.mark.parametrize('env_wrap', zip(ENV_IDS, WRAPPERS))
|
||||
@pytest.mark.parametrize('verbose', [1, 2])
|
||||
def test_verbosity(mp_type: str, env_wrap: Tuple[str, Type[RawInterfaceWrapper]], verbose: int):
|
||||
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
|
||||
|
||||
env_id, wrapper_class = env_wrap
|
||||
env = fancy_gym.make_bb(env_id, [wrapper_class], {'verbose': verbose},
|
||||
{'trajectory_generator_type': mp_type},
|
||||
{'controller_type': 'motor'},
|
||||
{'phase_generator_type': 'exp'},
|
||||
{'basis_generator_type': 'rbf'})
|
||||
{'basis_generator_type': basis_generator_type})
|
||||
env.reset()
|
||||
info_keys = list(env.step(env.action_space.sample())[3].keys())
|
||||
|
||||
@ -104,15 +108,17 @@ def test_verbosity(mp_type: str, env_wrap: Tuple[str, Type[RawInterfaceWrapper]]
|
||||
assert all(e in info_keys for e in mp_keys)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'dmp'])
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'dmp', 'prodmp'])
|
||||
@pytest.mark.parametrize('env_wrap', zip(ENV_IDS, WRAPPERS))
|
||||
def test_length(mp_type: str, env_wrap: Tuple[str, Type[RawInterfaceWrapper]]):
|
||||
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
|
||||
|
||||
env_id, wrapper_class = env_wrap
|
||||
env = fancy_gym.make_bb(env_id, [wrapper_class], {},
|
||||
{'trajectory_generator_type': mp_type},
|
||||
{'controller_type': 'motor'},
|
||||
{'phase_generator_type': 'exp'},
|
||||
{'basis_generator_type': 'rbf'})
|
||||
{'basis_generator_type': basis_generator_type})
|
||||
|
||||
for _ in range(5):
|
||||
env.reset()
|
||||
@ -121,14 +127,15 @@ def test_length(mp_type: str, env_wrap: Tuple[str, Type[RawInterfaceWrapper]]):
|
||||
assert length == env.spec.max_episode_steps
|
||||
|
||||
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'dmp'])
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'dmp', 'prodmp'])
|
||||
@pytest.mark.parametrize('reward_aggregation', [np.sum, np.mean, np.median, lambda x: np.mean(x[::2])])
|
||||
def test_aggregation(mp_type: str, reward_aggregation: Callable[[np.ndarray], float]):
|
||||
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
|
||||
env = fancy_gym.make_bb('toy-v0', [ToyWrapper], {'reward_aggregation': reward_aggregation},
|
||||
{'trajectory_generator_type': mp_type},
|
||||
{'controller_type': 'motor'},
|
||||
{'phase_generator_type': 'exp'},
|
||||
{'basis_generator_type': 'rbf'})
|
||||
{'basis_generator_type': basis_generator_type})
|
||||
env.reset()
|
||||
# ToyEnv only returns 1 as reward
|
||||
assert env.step(env.action_space.sample())[1] == reward_aggregation(np.ones(50, ))
|
||||
@ -149,12 +156,13 @@ def test_context_space(mp_type: str, env_wrap: Tuple[str, Type[RawInterfaceWrapp
|
||||
assert env.observation_space.shape == wrapper.context_mask[wrapper.context_mask].shape
|
||||
|
||||
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'dmp'])
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'dmp', 'prodmp'])
|
||||
@pytest.mark.parametrize('num_dof', [0, 1, 2, 5])
|
||||
@pytest.mark.parametrize('num_basis', [0, 1, 2, 5])
|
||||
@pytest.mark.parametrize('learn_tau', [True, False])
|
||||
@pytest.mark.parametrize('learn_delay', [True, False])
|
||||
def test_action_space(mp_type: str, num_dof: int, num_basis: int, learn_tau: bool, learn_delay: bool):
|
||||
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
|
||||
env = fancy_gym.make_bb('toy-v0', [ToyWrapper], {},
|
||||
{'trajectory_generator_type': mp_type,
|
||||
'action_dim': num_dof
|
||||
@ -164,28 +172,29 @@ def test_action_space(mp_type: str, num_dof: int, num_basis: int, learn_tau: boo
|
||||
'learn_tau': learn_tau,
|
||||
'learn_delay': learn_delay
|
||||
},
|
||||
{'basis_generator_type': 'rbf',
|
||||
{'basis_generator_type': basis_generator_type,
|
||||
'num_basis': num_basis
|
||||
})
|
||||
|
||||
base_dims = num_dof * num_basis
|
||||
additional_dims = num_dof if mp_type == 'dmp' else 0
|
||||
additional_dims = num_dof if 'dmp' in mp_type else 0
|
||||
traj_modification_dims = int(learn_tau) + int(learn_delay)
|
||||
assert env.action_space.shape[0] == base_dims + traj_modification_dims + additional_dims
|
||||
|
||||
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'dmp'])
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'dmp', 'prodmp'])
|
||||
@pytest.mark.parametrize('a', [1])
|
||||
@pytest.mark.parametrize('b', [1.0])
|
||||
@pytest.mark.parametrize('c', [[1], [1.0], ['str'], [{'a': 'b'}], [np.ones(3, )]])
|
||||
@pytest.mark.parametrize('d', [{'a': 1}, {1: 2.0}, {'a': [1.0]}, {'a': np.ones(3, )}, {'a': {'a': 'b'}}])
|
||||
@pytest.mark.parametrize('e', [Object()])
|
||||
def test_change_env_kwargs(mp_type: str, a: int, b: float, c: list, d: dict, e: Object):
|
||||
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
|
||||
env = fancy_gym.make_bb('toy-v0', [ToyWrapper], {},
|
||||
{'trajectory_generator_type': mp_type},
|
||||
{'controller_type': 'motor'},
|
||||
{'phase_generator_type': 'exp'},
|
||||
{'basis_generator_type': 'rbf'},
|
||||
{'basis_generator_type': basis_generator_type},
|
||||
a=a, b=b, c=c, d=d, e=e
|
||||
)
|
||||
assert a is env.a
|
||||
@ -196,18 +205,20 @@ def test_change_env_kwargs(mp_type: str, a: int, b: float, c: list, d: dict, e:
|
||||
assert e is env.e
|
||||
|
||||
|
||||
@pytest.mark.parametrize('mp_type', ['promp'])
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'prodmp'])
|
||||
@pytest.mark.parametrize('tau', [0.25, 0.5, 0.75, 1])
|
||||
def test_learn_tau(mp_type: str, tau: float):
|
||||
phase_generator_type = 'exp' if mp_type == 'prodmp' else 'linear'
|
||||
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
|
||||
env = fancy_gym.make_bb('toy-v0', [ToyWrapper], {'verbose': 2},
|
||||
{'trajectory_generator_type': mp_type,
|
||||
},
|
||||
{'controller_type': 'motor'},
|
||||
{'phase_generator_type': 'linear',
|
||||
{'phase_generator_type': phase_generator_type,
|
||||
'learn_tau': True,
|
||||
'learn_delay': False
|
||||
},
|
||||
{'basis_generator_type': 'rbf',
|
||||
{'basis_generator_type': basis_generator_type,
|
||||
}, seed=SEED)
|
||||
|
||||
d = True
|
||||
@ -228,26 +239,29 @@ def test_learn_tau(mp_type: str, tau: float):
|
||||
vel = info['velocities'].flatten()
|
||||
|
||||
# Check end is all same (only true for linear basis)
|
||||
assert np.all(pos[tau_time_steps:] == pos[-1])
|
||||
assert np.all(vel[tau_time_steps:] == vel[-1])
|
||||
if phase_generator_type == "linear":
|
||||
assert np.all(pos[tau_time_steps:] == pos[-1])
|
||||
assert np.all(vel[tau_time_steps:] == vel[-1])
|
||||
|
||||
# Check active trajectory section is different to end values
|
||||
assert np.all(pos[:tau_time_steps - 1] != pos[-1])
|
||||
assert np.all(vel[:tau_time_steps - 2] != vel[-1])
|
||||
|
||||
|
||||
@pytest.mark.parametrize('mp_type', ['promp'])
|
||||
#
|
||||
#
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'prodmp'])
|
||||
@pytest.mark.parametrize('delay', [0, 0.25, 0.5, 0.75])
|
||||
def test_learn_delay(mp_type: str, delay: float):
|
||||
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
|
||||
phase_generator_type = 'exp' if mp_type == 'prodmp' else 'linear'
|
||||
env = fancy_gym.make_bb('toy-v0', [ToyWrapper], {'verbose': 2},
|
||||
{'trajectory_generator_type': mp_type,
|
||||
},
|
||||
{'controller_type': 'motor'},
|
||||
{'phase_generator_type': 'linear',
|
||||
{'phase_generator_type': phase_generator_type,
|
||||
'learn_tau': False,
|
||||
'learn_delay': True
|
||||
},
|
||||
{'basis_generator_type': 'rbf',
|
||||
{'basis_generator_type': basis_generator_type,
|
||||
}, seed=SEED)
|
||||
|
||||
d = True
|
||||
@ -274,21 +288,23 @@ def test_learn_delay(mp_type: str, delay: float):
|
||||
# Check active trajectory section is different to beginning values
|
||||
assert np.all(pos[max(1, delay_time_steps):] != pos[0])
|
||||
assert np.all(vel[max(1, delay_time_steps)] != vel[0])
|
||||
|
||||
|
||||
@pytest.mark.parametrize('mp_type', ['promp'])
|
||||
#
|
||||
#
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'prodmp'])
|
||||
@pytest.mark.parametrize('tau', [0.25, 0.5, 0.75, 1])
|
||||
@pytest.mark.parametrize('delay', [0.25, 0.5, 0.75, 1])
|
||||
def test_learn_tau_and_delay(mp_type: str, tau: float, delay: float):
|
||||
phase_generator_type = 'exp' if mp_type == 'prodmp' else 'linear'
|
||||
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
|
||||
env = fancy_gym.make_bb('toy-v0', [ToyWrapper], {'verbose': 2},
|
||||
{'trajectory_generator_type': mp_type,
|
||||
},
|
||||
{'controller_type': 'motor'},
|
||||
{'phase_generator_type': 'linear',
|
||||
{'phase_generator_type': phase_generator_type,
|
||||
'learn_tau': True,
|
||||
'learn_delay': True
|
||||
},
|
||||
{'basis_generator_type': 'rbf',
|
||||
{'basis_generator_type': basis_generator_type,
|
||||
}, seed=SEED)
|
||||
|
||||
if env.spec.max_episode_steps * env.dt < delay + tau:
|
||||
@ -315,8 +331,9 @@ def test_learn_tau_and_delay(mp_type: str, tau: float, delay: float):
|
||||
vel = info['velocities'].flatten()
|
||||
|
||||
# Check end is all same (only true for linear basis)
|
||||
assert np.all(pos[joint_time_steps:] == pos[-1])
|
||||
assert np.all(vel[joint_time_steps:] == vel[-1])
|
||||
if phase_generator_type == "linear":
|
||||
assert np.all(pos[joint_time_steps:] == pos[-1])
|
||||
assert np.all(vel[joint_time_steps:] == vel[-1])
|
||||
|
||||
# Check beginning is all same (only true for linear basis)
|
||||
assert np.all(pos[:delay_time_steps - 1] == pos[0])
|
||||
@ -326,4 +343,4 @@ def test_learn_tau_and_delay(mp_type: str, tau: float, delay: float):
|
||||
active_pos = pos[delay_time_steps: joint_time_steps - 1]
|
||||
active_vel = vel[delay_time_steps: joint_time_steps - 2]
|
||||
assert np.all(active_pos != pos[-1]) and np.all(active_pos != pos[0])
|
||||
assert np.all(active_vel != vel[-1]) and np.all(active_vel != vel[0])
|
||||
assert np.all(active_vel != vel[-1]) and np.all(active_vel != vel[0])
|
@ -1,23 +0,0 @@
|
||||
from itertools import chain
|
||||
|
||||
import pytest
|
||||
|
||||
import fancy_gym
|
||||
from test.utils import run_env, run_env_determinism
|
||||
|
||||
Fancy_ProDMP_IDS = fancy_gym.ALL_FANCY_MOVEMENT_PRIMITIVE_ENVIRONMENTS['ProDMP']
|
||||
|
||||
All_ProDMP_IDS = fancy_gym.ALL_MOVEMENT_PRIMITIVE_ENVIRONMENTS['ProDMP']
|
||||
|
||||
|
||||
|
||||
@pytest.mark.parametrize('env_id', All_ProDMP_IDS)
|
||||
def test_replanning_envs(env_id: str):
|
||||
"""Tests that ProDMP environments run without errors using random actions."""
|
||||
run_env(env_id)
|
||||
|
||||
@pytest.mark.parametrize('env_id', All_ProDMP_IDS)
|
||||
def test_replanning_determinism(env_id: str):
|
||||
"""Tests that ProDMP environments are deterministic."""
|
||||
run_env_determinism(env_id, 0)
|
||||
|
@ -98,7 +98,7 @@ def test_learn_sub_trajectories(mp_type: str, env_wrap: Tuple[str, Type[RawInter
|
||||
assert length <= np.round(env.traj_gen.tau.numpy() / env.dt)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'dmp'])
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'dmp', 'prodmp'])
|
||||
@pytest.mark.parametrize('env_wrap', zip(ENV_IDS, WRAPPERS))
|
||||
@pytest.mark.parametrize('add_time_aware_wrapper_before', [True, False])
|
||||
@pytest.mark.parametrize('replanning_time', [10, 100, 1000])
|
||||
@ -114,11 +114,14 @@ def test_replanning_time(mp_type: str, env_wrap: Tuple[str, Type[RawInterfaceWra
|
||||
|
||||
replanning_schedule = lambda c_pos, c_vel, obs, c_action, t: t % replanning_time == 0
|
||||
|
||||
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
|
||||
phase_generator_type = 'exp' if 'dmp' in mp_type else 'linear'
|
||||
|
||||
env = fancy_gym.make_bb(env_id, [wrapper_class], {'replanning_schedule': replanning_schedule, 'verbose': 2},
|
||||
{'trajectory_generator_type': mp_type},
|
||||
{'controller_type': 'motor'},
|
||||
{'phase_generator_type': 'exp'},
|
||||
{'basis_generator_type': 'rbf'}, seed=SEED)
|
||||
{'phase_generator_type': phase_generator_type},
|
||||
{'basis_generator_type': basis_generator_type}, seed=SEED)
|
||||
|
||||
assert env.do_replanning
|
||||
assert callable(env.replanning_schedule)
|
||||
@ -142,3 +145,189 @@ def test_replanning_time(mp_type: str, env_wrap: Tuple[str, Type[RawInterfaceWra
|
||||
env.reset()
|
||||
|
||||
assert replanning_schedule(None, None, None, None, length)
|
||||
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'prodmp'])
|
||||
@pytest.mark.parametrize('max_planning_times', [1, 2, 3, 4])
|
||||
@pytest.mark.parametrize('sub_segment_steps', [5, 10])
|
||||
def test_max_planning_times(mp_type: str, max_planning_times: int, sub_segment_steps: int):
|
||||
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
|
||||
phase_generator_type = 'exp' if mp_type == 'prodmp' else 'linear'
|
||||
env = fancy_gym.make_bb('toy-v0', [ToyWrapper],
|
||||
{'max_planning_times': max_planning_times,
|
||||
'replanning_schedule': lambda pos, vel, obs, action, t: t % sub_segment_steps == 0,
|
||||
'verbose': 2},
|
||||
{'trajectory_generator_type': mp_type,
|
||||
},
|
||||
{'controller_type': 'motor'},
|
||||
{'phase_generator_type': phase_generator_type,
|
||||
'learn_tau': False,
|
||||
'learn_delay': False
|
||||
},
|
||||
{'basis_generator_type': basis_generator_type,
|
||||
},
|
||||
seed=SEED)
|
||||
_ = env.reset()
|
||||
d = False
|
||||
planning_times = 0
|
||||
while not d:
|
||||
_, _, d, _ = env.step(env.action_space.sample())
|
||||
planning_times += 1
|
||||
assert planning_times == max_planning_times
|
||||
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'prodmp'])
|
||||
@pytest.mark.parametrize('max_planning_times', [1, 2, 3, 4])
|
||||
@pytest.mark.parametrize('sub_segment_steps', [5, 10])
|
||||
@pytest.mark.parametrize('tau', [0.5, 1.0, 1.5, 2.0])
|
||||
def test_replanning_with_learn_tau(mp_type: str, max_planning_times: int, sub_segment_steps: int, tau: float):
|
||||
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
|
||||
phase_generator_type = 'exp' if mp_type == 'prodmp' else 'linear'
|
||||
env = fancy_gym.make_bb('toy-v0', [ToyWrapper],
|
||||
{'replanning_schedule': lambda pos, vel, obs, action, t: t % sub_segment_steps == 0,
|
||||
'max_planning_times': max_planning_times,
|
||||
'verbose': 2},
|
||||
{'trajectory_generator_type': mp_type,
|
||||
},
|
||||
{'controller_type': 'motor'},
|
||||
{'phase_generator_type': phase_generator_type,
|
||||
'learn_tau': True,
|
||||
'learn_delay': False
|
||||
},
|
||||
{'basis_generator_type': basis_generator_type,
|
||||
},
|
||||
seed=SEED)
|
||||
_ = env.reset()
|
||||
d = False
|
||||
planning_times = 0
|
||||
while not d:
|
||||
action = env.action_space.sample()
|
||||
action[0] = tau
|
||||
_, _, d, info = env.step(action)
|
||||
planning_times += 1
|
||||
assert planning_times == max_planning_times
|
||||
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'prodmp'])
|
||||
@pytest.mark.parametrize('max_planning_times', [1, 2, 3, 4])
|
||||
@pytest.mark.parametrize('sub_segment_steps', [5, 10])
|
||||
@pytest.mark.parametrize('delay', [0.1, 0.25, 0.5, 0.75])
|
||||
def test_replanning_with_learn_delay(mp_type: str, max_planning_times: int, sub_segment_steps: int, delay: float):
|
||||
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
|
||||
phase_generator_type = 'exp' if mp_type == 'prodmp' else 'linear'
|
||||
env = fancy_gym.make_bb('toy-v0', [ToyWrapper],
|
||||
{'replanning_schedule': lambda pos, vel, obs, action, t: t % sub_segment_steps == 0,
|
||||
'max_planning_times': max_planning_times,
|
||||
'verbose': 2},
|
||||
{'trajectory_generator_type': mp_type,
|
||||
},
|
||||
{'controller_type': 'motor'},
|
||||
{'phase_generator_type': phase_generator_type,
|
||||
'learn_tau': False,
|
||||
'learn_delay': True
|
||||
},
|
||||
{'basis_generator_type': basis_generator_type,
|
||||
},
|
||||
seed=SEED)
|
||||
_ = env.reset()
|
||||
d = False
|
||||
planning_times = 0
|
||||
while not d:
|
||||
action = env.action_space.sample()
|
||||
action[0] = delay
|
||||
_, _, d, info = env.step(action)
|
||||
|
||||
delay_time_steps = int(np.round(delay / env.dt))
|
||||
pos = info['positions'].flatten()
|
||||
vel = info['velocities'].flatten()
|
||||
|
||||
# Check beginning is all same (only true for linear basis)
|
||||
if planning_times == 0:
|
||||
assert np.all(pos[:max(1, delay_time_steps - 1)] == pos[0])
|
||||
assert np.all(vel[:max(1, delay_time_steps - 2)] == vel[0])
|
||||
|
||||
# only valid when delay < sub_segment_steps
|
||||
elif planning_times > 0 and delay_time_steps < sub_segment_steps:
|
||||
assert np.all(pos[1:max(1, delay_time_steps - 1)] != pos[0])
|
||||
assert np.all(vel[1:max(1, delay_time_steps - 2)] != vel[0])
|
||||
|
||||
# Check active trajectory section is different to beginning values
|
||||
assert np.all(pos[max(1, delay_time_steps):] != pos[0])
|
||||
assert np.all(vel[max(1, delay_time_steps)] != vel[0])
|
||||
|
||||
planning_times += 1
|
||||
|
||||
assert planning_times == max_planning_times
|
||||
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'prodmp'])
|
||||
@pytest.mark.parametrize('max_planning_times', [1, 2, 3])
|
||||
@pytest.mark.parametrize('sub_segment_steps', [5, 10, 15])
|
||||
@pytest.mark.parametrize('delay', [0, 0.25, 0.5, 0.75])
|
||||
@pytest.mark.parametrize('tau', [0.5, 0.75, 1.0])
|
||||
def test_replanning_with_learn_delay_and_tau(mp_type: str, max_planning_times: int, sub_segment_steps: int,
|
||||
delay: float, tau: float):
|
||||
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
|
||||
phase_generator_type = 'exp' if mp_type == 'prodmp' else 'linear'
|
||||
env = fancy_gym.make_bb('toy-v0', [ToyWrapper],
|
||||
{'replanning_schedule': lambda pos, vel, obs, action, t: t % sub_segment_steps == 0,
|
||||
'max_planning_times': max_planning_times,
|
||||
'verbose': 2},
|
||||
{'trajectory_generator_type': mp_type,
|
||||
},
|
||||
{'controller_type': 'motor'},
|
||||
{'phase_generator_type': phase_generator_type,
|
||||
'learn_tau': True,
|
||||
'learn_delay': True
|
||||
},
|
||||
{'basis_generator_type': basis_generator_type,
|
||||
},
|
||||
seed=SEED)
|
||||
_ = env.reset()
|
||||
d = False
|
||||
planning_times = 0
|
||||
while not d:
|
||||
action = env.action_space.sample()
|
||||
action[0] = tau
|
||||
action[1] = delay
|
||||
_, _, d, info = env.step(action)
|
||||
|
||||
delay_time_steps = int(np.round(delay / env.dt))
|
||||
|
||||
pos = info['positions'].flatten()
|
||||
vel = info['velocities'].flatten()
|
||||
|
||||
# Delay only applies to first planning time
|
||||
if planning_times == 0:
|
||||
# Check delay is applied
|
||||
assert np.all(pos[:max(1, delay_time_steps - 1)] == pos[0])
|
||||
assert np.all(vel[:max(1, delay_time_steps - 2)] == vel[0])
|
||||
# Check active trajectory section is different to beginning values
|
||||
assert np.all(pos[max(1, delay_time_steps):] != pos[0])
|
||||
assert np.all(vel[max(1, delay_time_steps)] != vel[0])
|
||||
|
||||
planning_times += 1
|
||||
|
||||
assert planning_times == max_planning_times
|
||||
|
||||
@pytest.mark.parametrize('mp_type', ['promp', 'prodmp'])
|
||||
@pytest.mark.parametrize('max_planning_times', [1, 2, 3, 4])
|
||||
@pytest.mark.parametrize('sub_segment_steps', [5, 10])
|
||||
def test_replanning_schedule(mp_type: str, max_planning_times: int, sub_segment_steps: int):
|
||||
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
|
||||
phase_generator_type = 'exp' if mp_type == 'prodmp' else 'linear'
|
||||
env = fancy_gym.make_bb('toy-v0', [ToyWrapper],
|
||||
{'max_planning_times': max_planning_times,
|
||||
'replanning_schedule': lambda pos, vel, obs, action, t: t % sub_segment_steps == 0,
|
||||
'verbose': 2},
|
||||
{'trajectory_generator_type': mp_type,
|
||||
},
|
||||
{'controller_type': 'motor'},
|
||||
{'phase_generator_type': phase_generator_type,
|
||||
'learn_tau': False,
|
||||
'learn_delay': False
|
||||
},
|
||||
{'basis_generator_type': basis_generator_type,
|
||||
},
|
||||
seed=SEED)
|
||||
_ = env.reset()
|
||||
d = False
|
||||
for i in range(max_planning_times):
|
||||
_, _, d, _ = env.step(env.action_space.sample())
|
||||
assert d
|
||||
|
Loading…
Reference in New Issue
Block a user