diff --git a/fancy_gym/envs/__init__.py b/fancy_gym/envs/__init__.py index a12f057..78e1a05 100644 --- a/fancy_gym/envs/__init__.py +++ b/fancy_gym/envs/__init__.py @@ -234,10 +234,7 @@ for reward_type in ["Dense", "TemporalSparse", "TemporalSpatialSparse"]: register( id='BoxPushing{}-v0'.format(reward_type), entry_point='fancy_gym.envs.mujoco:BoxPushing{}'.format(reward_type), - max_episode_steps=MAX_EPISODE_STEPS_BOX_PUSHING//10, # divided by frames skip - kwargs={ - "frame_skip": 10 - } + max_episode_steps=MAX_EPISODE_STEPS_BOX_PUSHING, ) # Here we use the same reward as in BeerPong-v0, but now consider after the release, diff --git a/fancy_gym/envs/mujoco/box_pushing/box_pushing_env.py b/fancy_gym/envs/mujoco/box_pushing/box_pushing_env.py index b5490aa..eea6455 100644 --- a/fancy_gym/envs/mujoco/box_pushing/box_pushing_env.py +++ b/fancy_gym/envs/mujoco/box_pushing/box_pushing_env.py @@ -9,7 +9,7 @@ from fancy_gym.envs.mujoco.box_pushing.box_pushing_utils import desired_rod_quat import mujoco -MAX_EPISODE_STEPS_BOX_PUSHING = 1000 +MAX_EPISODE_STEPS_BOX_PUSHING = 100 BOX_POS_BOUND = np.array([[0.3, -0.45, -0.01], [0.6, 0.45, -0.01]]) @@ -60,7 +60,7 @@ class BoxPushingEnvBase(MujocoEnv, utils.EzPickle): self._steps += 1 self._episode_energy += np.sum(np.square(action)) - episode_end = True if self._steps >= MAX_EPISODE_STEPS_BOX_PUSHING//self.frame_skip else False + episode_end = True if self._steps >= MAX_EPISODE_STEPS_BOX_PUSHING else False box_pos = self.data.body("box_0").xpos.copy() box_quat = self.data.body("box_0").xquat.copy() @@ -121,8 +121,8 @@ class BoxPushingEnvBase(MujocoEnv, utils.EzPickle): return self._get_obs() def sample_context(self): - pos = np.random.uniform(low=BOX_POS_BOUND[0], high=BOX_POS_BOUND[1], size=3) - theta = np.random.uniform(low=0, high=np.pi * 2) + pos = self.np_random.uniform(low=BOX_POS_BOUND[0], high=BOX_POS_BOUND[1]) + theta = self.np_random.uniform(low=0, high=np.pi * 2) quat = rot_to_quat(theta, np.array([0, 0, 1])) return np.concatenate([pos, quat]) @@ -360,7 +360,7 @@ class BoxPushingTemporalSpatialSparse(BoxPushingEnvBase): if __name__=="__main__": env = BoxPushingTemporalSpatialSparse(frame_skip=10) env.reset() - for i in range(100): + for i in range(1): env.reset() for _ in range(100): env.render("human")