diff --git a/alr_envs/alr/__init__.py b/alr_envs/alr/__init__.py index cc9768a..d3e976c 100644 --- a/alr_envs/alr/__init__.py +++ b/alr_envs/alr/__init__.py @@ -974,7 +974,7 @@ register( entry_point='alr_envs.utils.make_env_helpers:make_mp_env_helper', kwargs={ "name": f"alr_envs:ALRHopperJump-v3", - "wrappers": [mujoco.hopper_jump.NewMPWrapper], + "wrappers": [mujoco.hopper_jump.NewHighCtxtMPWrapper], "ep_wrapper_kwargs": { "weight_scale": 1 }, @@ -1010,7 +1010,7 @@ register( entry_point='alr_envs.utils.make_env_helpers:make_mp_env_helper', kwargs={ "name": f"alr_envs:ALRHopperJump-v4", - "wrappers": [mujoco.hopper_jump.NewMPWrapper], + "wrappers": [mujoco.hopper_jump.NewHighCtxtMPWrapper], "ep_wrapper_kwargs": { "weight_scale": 1 }, diff --git a/alr_envs/alr/mujoco/hopper_jump/hopper_jump.py b/alr_envs/alr/mujoco/hopper_jump/hopper_jump.py index afedf4e..2759fd4 100644 --- a/alr_envs/alr/mujoco/hopper_jump/hopper_jump.py +++ b/alr_envs/alr/mujoco/hopper_jump/hopper_jump.py @@ -11,7 +11,7 @@ class ALRHopperJumpEnv(HopperEnv): - healthy_reward: 1.0 -> 0.1 -> 0 - healthy_angle_range: (-0.2, 0.2) -> (-float('inf'), float('inf')) - healthy_z_range: (0.7, float('inf')) -> (0.5, float('inf')) - + - exclude current positions from observatiosn is set to False """ def __init__(self, @@ -26,7 +26,7 @@ class ALRHopperJumpEnv(HopperEnv): healthy_z_range=(0.5, float('inf')), healthy_angle_range=(-float('inf'), float('inf')), reset_noise_scale=5e-3, - exclude_current_positions_from_observation=True, + exclude_current_positions_from_observation=False, max_episode_steps=250): self.current_step = 0 self.max_height = 0 @@ -90,7 +90,7 @@ class ALRHopperJumpEnv(HopperEnv): return np.append(super()._get_obs(), self.goal) def reset(self): - self.goal = np.random.uniform(1.4, 2.16, 1) # 1.3 2.3 + self.goal = self.np_random.uniform(1.4, 2.16, 1)[0] # 1.3 2.3 self.max_height = 0 self.current_step = 0 return super().reset() @@ -149,12 +149,12 @@ class ALRHopperXYJumpEnv(ALRHopperJumpEnv): if self.contact_dist is None and self.contact_with_floor: self.contact_dist = np.linalg.norm(self.sim.data.site_xpos[self.model.site_name2id('foot_site')] - - np.array([self.goal, 0, 0], dtype=object))[0] + - np.array([self.goal, 0, 0])) ctrl_cost = self.control_cost(action) costs = ctrl_cost done = False - goal_dist = np.atleast_1d(np.linalg.norm(site_pos_after - np.array([self.goal, 0, 0], dtype=object)))[0] + goal_dist = np.linalg.norm(site_pos_after - np.array([self.goal, 0, 0])) rewards = 0 if self.current_step >= self.max_episode_steps: # healthy_reward = 0 if self.context else self.healthy_reward * self.current_step @@ -210,10 +210,14 @@ class ALRHopperXYJumpEnv(ALRHopperJumpEnv): # self.goal = np.random.uniform(-1.5, 1.5, 1) # self.goal = np.random.uniform(0, 1.5, 1) # self.goal = self.np_random.uniform(0, 1.5, 1) - self.goal = self.np_random.uniform(0.3, 1.35, 1) - self.sim.model.body_pos[self.sim.model.body_name2id('goal_site_body')] = np.array([self.goal, 0, 0], dtype=object) + self.goal = self.np_random.uniform(0.3, 1.35, 1)[0] + self.sim.model.body_pos[self.sim.model.body_name2id('goal_site_body')] = np.array([self.goal, 0, 0]) return self.reset_model() + def _get_obs(self): + goal_diff = self.sim.data.site_xpos[self.model.site_name2id('foot_site')].copy() \ + - np.array([self.goal, 0, 0]) + return np.concatenate((super(ALRHopperXYJumpEnv, self)._get_obs(), goal_diff)) class ALRHopperXYJumpEnvStepBased(ALRHopperXYJumpEnv): @@ -229,7 +233,7 @@ class ALRHopperXYJumpEnvStepBased(ALRHopperXYJumpEnv): healthy_z_range=(0.5, float('inf')), healthy_angle_range=(-float('inf'), float('inf')), reset_noise_scale=5e-3, - exclude_current_positions_from_observation=True, + exclude_current_positions_from_observation=False, max_episode_steps=250, height_scale = 10, dist_scale = 3, @@ -242,7 +246,10 @@ class ALRHopperXYJumpEnvStepBased(ALRHopperXYJumpEnv): reset_noise_scale, exclude_current_positions_from_observation, max_episode_steps) def step(self, action): - + print("") + print('height_scale: ', self.height_scale) + print('healthy_scale: ', self.healthy_scale) + print('dist_scale: ', self.dist_scale) self._floor_geom_id = self.model.geom_name2id('floor') self._foot_geom_id = self.model.geom_name2id('foot_geom') @@ -348,7 +355,9 @@ if __name__ == '__main__': render_mode = "human" # "human" or "partial" or "final" # env = ALRHopperJumpEnv() # env = ALRHopperXYJumpEnv() + np.random.seed(0) env = ALRHopperXYJumpEnvStepBased() + env.seed(0) # env = ALRHopperJumpRndmPosEnv() obs = env.reset() diff --git a/alr_envs/alr/mujoco/hopper_jump/new_mp_wrapper.py b/alr_envs/alr/mujoco/hopper_jump/new_mp_wrapper.py index 31be6be..7a26d62 100644 --- a/alr_envs/alr/mujoco/hopper_jump/new_mp_wrapper.py +++ b/alr_envs/alr/mujoco/hopper_jump/new_mp_wrapper.py @@ -23,17 +23,19 @@ class NewMPWrapper(EpisodicWrapper): # Random x goal + random init pos def set_active_obs(self): return np.hstack([ - [False] * (2 + int(not self.env.exclude_current_positions_from_observation)), # position - [True] * 3, # set to true if randomize initial pos - [False] * 6, # velocity - [True] - ]) + [False] * (2 + int(not self.env.exclude_current_positions_from_observation)), # position + [True] * 3, # set to true if randomize initial pos + [False] * 6, # velocity + [True] + ]) class NewHighCtxtMPWrapper(NewMPWrapper): def set_active_obs(self): return np.hstack([ - [True] * (5 + int(not self.env.exclude_current_positions_from_observation)), # position + [False] * (2 + int(not self.env.exclude_current_positions_from_observation)), # position + [True] * 3, # set to true if randomize initial pos [False] * 6, # velocity - [False] + [True], # goal + [False] * 3 # goal diff ]) \ No newline at end of file