diff --git a/README.md b/README.md index ca4f102..55fe81a 100644 --- a/README.md +++ b/README.md @@ -17,7 +17,7 @@ Built upon the foundation of [Gymnasium](https://gymnasium.farama.org/) (a maint - **New Challenging Environments**: We've introduced several new environments (Panda Box Pushing, Table Tennis, etc.) that present a higher degree of difficulty, pushing the boundaries of reinforcement learning research. - **Support for Movement Primitives**: `fancy_gym` supports a range of movement primitives (MPs), including Dynamic Movement Primitives (DMPs), Probabilistic Movement Primitives (ProMP), and Probabilistic Dynamic Movement Primitives (ProDMP). - **Upgrade to Movement Primitives**: With our framework, it's straightforward to transform standard Gymnasium environments into environments that support movement primitives. -- **Benchmark Suite Compatibility**: `fancy_gym` makes it easy to access renowned benchmark suites such as [DeepMind Control](https://deepmind.com/research/publications/2020/dm-control-Software-and-Tasks-for-Continuous-Control) and [Metaworld](https://meta-world.github.io/), wether you want to use them in the normal step-based or a MP-based setting. +- **Benchmark Suite Compatibility**: `fancy_gym` makes it easy to access renowned benchmark suites such as [DeepMind Control](https://deepmind.com/research/publications/2020/dm-control-Software-and-Tasks-for-Continuous-Control) and [Metaworld](https://meta-world.github.io/), whether you want to use them in the normal step-based or a MP-based setting. - **Contribute Your Own Environments**: If you're inspired to create custom gym environments, both step-based and with movement primitives, this [guide](https://www.gymlibrary.dev/content/environment_creation/) will assist you. We encourage and highly appreciate submissions via PRs to integrate these environments into `fancy_gym`. ## Movement Primitive Environments (Episode-Based/Black-Box Environments)