started table tennis env
This commit is contained in:
parent
2d9e7fb3eb
commit
cab2c249bb
1
alr_envs/mujoco/gym_table_tennis/__init__.py
Normal file
1
alr_envs/mujoco/gym_table_tennis/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
|
1
alr_envs/mujoco/gym_table_tennis/envs/__init__.py
Normal file
1
alr_envs/mujoco/gym_table_tennis/envs/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
|
@ -0,0 +1,12 @@
|
||||
<mujocoinclude>
|
||||
<actuator boastype="none">
|
||||
<motor name="wam/shoulder_yaw_link_right_motor" joint="wam/base_yaw_joint_right"/>
|
||||
<motor name="wam/shoulder_pitch_joint_right_motor" joint='wam/shoulder_pitch_joint_right'/>
|
||||
<motor name="wam/shoulder_yaw_joint_right_motor" joint='wam/shoulder_yaw_joint_right'/>
|
||||
<motor name="wam/elbow_pitch_joint_right_motor" joint='wam/elbow_pitch_joint_right'/>
|
||||
<motor name="wam/wrist_yaw_joint_right_motor" joint='wam/wrist_yaw_joint_right'/>
|
||||
<motor name="wam/wrist_pitch_joint_right_motor" joint='wam/wrist_pitch_joint_right'/>
|
||||
<motor name="wam/palm_yaw_joint_right_motor" joint='wam/palm_yaw_joint_right'/>
|
||||
</actuator>
|
||||
</mujocoinclude>
|
||||
|
@ -0,0 +1,76 @@
|
||||
<mujocoinclude>
|
||||
<body name="wam/base_link_left" pos="-2.5 0 2" quat="0 1 0 0" childclass="wam">
|
||||
<inertial pos="0 0 0" mass="1" diaginertia="0.1 0.1 0.1"/>
|
||||
<geom class="viz" mesh="base_link_fine" rgba="0.5 0.5 0.5 0"/>
|
||||
<geom class="col" mesh="base_link_convex" rgba="0.5 0.5 0.5 1"/>
|
||||
<body name="wam/shoulder_yaw_link" pos="0 0 0.346">
|
||||
<inertial pos="-0.00443422 -0.00066489 -0.128904" quat="0.69566 0.716713 -0.0354863 0.0334839" mass="5"
|
||||
diaginertia="0.135089 0.113095 0.0904426"/>
|
||||
<joint name="wam/base_yaw_joint" range="-2.6 2.6" damping="1.98"/>
|
||||
<geom class="viz" mesh="shoulder_link_fine" rgba="1 1 1 0"/>
|
||||
<geom class="col" mesh="shoulder_link_convex_decomposition_p1"/>
|
||||
<geom class="col" mesh="shoulder_link_convex_decomposition_p2"/>
|
||||
<geom class="col" mesh="shoulder_link_convex_decomposition_p3"/>
|
||||
<body name="wam/shoulder_pitch_link" pos="0 0 0" quat="0.707107 -0.707107 0 0">
|
||||
<inertial pos="-0.00236981 -0.0154211 0.0310561" quat="0.961794 0.273112 -0.0169316 0.00866592"
|
||||
mass="3.87494" diaginertia="0.0214195 0.0167127 0.0126452"/> <!--seems off-->
|
||||
<joint name="wam/shoulder_pitch_joint" range="-1.985 1.985" damping="0.55"/>
|
||||
<geom class="viz" mesh="shoulder_pitch_link_fine" rgba="1 1 1 0"/>
|
||||
<geom class="col" mesh="shoulder_pitch_link_convex"/>
|
||||
<body name="wam/upper_arm_link" pos="0 0 0" quat="0.707107 0.707107 0 0">
|
||||
<inertial pos="0.00683259 3.309e-005 0.392492" quat="0.647136 0.0170822 0.0143038 0.762049"
|
||||
mass="2.20228" diaginertia="0.0592718 0.0592207 0.00313419"/>
|
||||
<joint name="wam/shoulder_yaw_joint" range="-2.8 2.8" damping="1.65"/>
|
||||
<geom class="viz" mesh="upper_arm_link_fine" rgba="1 1 1 0"/>
|
||||
<geom class="col" mesh="upper_arm_link_convex_decomposition_p1" rgba="0.094 0.48 0.804 1"/>
|
||||
<geom class="col" mesh="upper_arm_link_convex_decomposition_p2" rgba="0.094 0.48 0.804 1"/>
|
||||
<body name="wam/forearm_link" pos="0.045 0 0.55" quat="0.707107 -0.707107 0 0">
|
||||
<inertial pos="-0.0400149 -0.142717 -0.00022942"
|
||||
quat="0.704281 0.706326 0.0180333 0.0690353" mass="0.500168"
|
||||
diaginertia="0.0151047 0.0148285 0.00275805"/>
|
||||
<joint name="wam/elbow_pitch_joint" range="-0.9 3.14159" damping="0.88"/>
|
||||
<geom class="viz" mesh="elbow_link_fine" rgba="1 1 1 0"/>
|
||||
<geom class="col" mesh="elbow_link_convex"/>
|
||||
<geom class="viz" mesh="forearm_link_fine" pos="-.045 -0.0730 0" euler="1.57 0 0" rgba="1 1 1 0"/>
|
||||
<geom class="col" mesh="forearm_link_convex_decomposition_p1" pos="-0.045 -0.0730 0"
|
||||
euler="1.57 0 0" rgba="0.094 0.48 0.804 1"/>
|
||||
<geom class="col" mesh="forearm_link_convex_decomposition_p2" pos="-.045 -0.0730 0"
|
||||
euler="1.57 0 0" rgba="0.094 0.48 0.804 1"/>
|
||||
<body name="wam/wrist_yaw_link" pos="-0.045 -0.3 0" quat="0.707107 0.707107 0 0">
|
||||
<inertial pos="8.921e-005 0.00435824 -0.00511217"
|
||||
quat="0.630602 0.776093 0.00401969 -0.002372" mass="1.05376"
|
||||
diaginertia="0.000555168 0.00046317 0.000234072"/> <!--this is an approximation-->
|
||||
<joint name="wam/wrist_yaw_joint" range="-4.55 1.25" damping="0.55"/>
|
||||
<geom class="viz" mesh="wrist_yaw_link_fine" rgba="1 1 1 0"/>
|
||||
<geom class="col" mesh="wrist_yaw_link_convex_decomposition_p1"/>
|
||||
<geom class="col" mesh="wrist_yaw_link_convex_decomposition_p2"/>
|
||||
<body name="wam/wrist_pitch_link" pos="0 0 0" quat="0.707107 -0.707107 0 0">
|
||||
<inertial pos="-0.00012262 -0.0246834 -0.0170319"
|
||||
quat="0.630602 0.776093 0.00401969 -0.002372" mass="0.517974"
|
||||
diaginertia="0.000555168 0.00046317 0.000234072"/>
|
||||
<joint name="wam/wrist_pitch_joint" range="-1.5707 1.5707" damping="0.11"/>
|
||||
<geom class="viz" mesh="wrist_pitch_link_fine" rgba="1 1 1 0"/>
|
||||
<geom class="col" mesh="wrist_pitch_link_convex_decomposition_p1" rgba="1 0.5 0.313 1"/>
|
||||
<geom class="col" mesh="wrist_pitch_link_convex_decomposition_p2" rgba="1 0.5 0.313 1"/>
|
||||
<geom class="col" mesh="wrist_pitch_link_convex_decomposition_p3" rgba="1 0.5 0.313 1"/>
|
||||
<body name="wam/wrist_palm_link" pos="0 0 0" quat="0.707107 0.707107 0 0">
|
||||
<inertial pos="0 0 0.055" quat="0.707107 0 0 0.707107" mass="0.0828613"
|
||||
diaginertia="0.00020683 0.00010859 0.00010851"/>
|
||||
<joint name="wam/palm_yaw_joint" range="-3 3" damping="0.11"/>
|
||||
<geom class="viz" mesh="wrist_palm_link_fine" rgba="1 1 1 0"/>
|
||||
<geom class="col" mesh="wrist_palm_link_convex"/>
|
||||
<body name="paddle_left" pos="0 0 0.26" childclass="contact_geom">
|
||||
<geom name="bat_left" type="cylinder" size="0.075 0.0015" rgba="1 0 0 1"
|
||||
quat="0.71 0 0.71 0"/>
|
||||
<geom name="handle_left" type="box" size="0.005 0.01 0.05" pos="0 0 -0.08"
|
||||
rgba="1 1 1 1"/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</mujocoinclude>
|
@ -0,0 +1,95 @@
|
||||
<mujocoinclue>
|
||||
<body name="wam/base_link_right" pos="2.5 0 2" quat="0 0 1 0" childclass="wam" >
|
||||
<inertial pos="0 0 0" mass="1" diaginertia="0.1 0.1 0.1"/>
|
||||
<geom name="base_link_fine" class="viz" mesh="base_link_fine" rgba="0.5 0.5 0.5 0"/>
|
||||
<geom name="base_link_convex" class="col" mesh="base_link_convex" rgba="0.5 0.5 0.5 1"/>
|
||||
<body name="wam/shoulder_yaw_link_right" pos="0 0 0.346">
|
||||
<inertial pos="-0.00443422 -0.00066489 -0.128904" quat="0.69566 0.716713 -0.0354863 0.0334839" mass="5"
|
||||
diaginertia="0.135089 0.113095 0.0904426"/>
|
||||
<joint name="wam/base_yaw_joint_right" range="-2.6 2.6" damping="1.98"/>
|
||||
<geom name="shoulder_link_fine" class="viz" mesh="shoulder_link_fine" rgba="1 1 1 0"/>
|
||||
<geom name="shoulder_link_convex_decomposition_p1" class="col"
|
||||
mesh="shoulder_link_convex_decomposition_p1"/>
|
||||
<geom name="shoulder_link_convex_decomposition_p2" class="col"
|
||||
mesh="shoulder_link_convex_decomposition_p2"/>
|
||||
<geom name="shoulder_link_convex_decomposition_p3" class="col"
|
||||
mesh="shoulder_link_convex_decomposition_p3"/>
|
||||
<body name="wam/shoulder_pitch_link_right" pos="0 0 0" quat="0.707107 -0.707107 0 0">
|
||||
<inertial pos="-0.00236981 -0.0154211 0.0310561" quat="0.961794 0.273112 -0.0169316 0.00866592"
|
||||
mass="3.87494" diaginertia="0.0214195 0.0167127 0.0126452"/> <!--seems off-->
|
||||
<joint name="wam/shoulder_pitch_joint_right" range="-2 2" damping="0.55"/>
|
||||
<geom name="shoulder_pitch_link_fine" class="viz" mesh="shoulder_pitch_link_fine" rgba="1 1 1 0"/>
|
||||
<geom name="shoulder_pitch_link_convex" class="col" mesh="shoulder_pitch_link_convex"/>
|
||||
<body name="wam/upper_arm_link_right" pos="0 0 0" quat="0.707107 0.707107 0 0">
|
||||
<inertial pos="0.00683259 3.309e-005 0.392492" quat="0.647136 0.0170822 0.0143038 0.762049"
|
||||
mass="2.20228" diaginertia="0.0592718 0.0592207 0.00313419"/>
|
||||
<joint name="wam/shoulder_yaw_joint_right" range="-2.8 2.8" damping="1.65"/>
|
||||
<geom name="upper_arm_link_fine" class="viz" mesh="upper_arm_link_fine" rgba="1 1 1 0"/>
|
||||
<geom name="upper_arm_link_convex_decomposition_p1" class="col"
|
||||
mesh="upper_arm_link_convex_decomposition_p1" rgba="0.094 0.48 0.804 1"/>
|
||||
<geom name="upper_arm_link_convex_decomposition_p2" class="col"
|
||||
mesh="upper_arm_link_convex_decomposition_p2" rgba="0.094 0.48 0.804 1"/>
|
||||
<body name="wam/forearm_link_right" pos="0.045 0 0.55" quat="0.707107 -0.707107 0 0">
|
||||
<inertial pos="-0.0400149 -0.142717 -0.00022942"
|
||||
quat="0.704281 0.706326 0.0180333 0.0690353" mass="0.500168"
|
||||
diaginertia="0.0151047 0.0148285 0.00275805"/>
|
||||
<joint name="wam/elbow_pitch_joint_right" range="-0.9 3.1" damping="0.88"/>
|
||||
<geom name="elbow_link_fine" class="viz" mesh="elbow_link_fine" rgba="1 1 1 0"/>
|
||||
<geom name="elbow_link_convex" class="col" mesh="elbow_link_convex"/>
|
||||
<geom name="forearm_link_fine" class="viz" mesh="forearm_link_fine" pos="-.045 -0.0730 0"
|
||||
euler="1.57 0 0" rgba="1 1 1 0"/>
|
||||
<geom name="forearm_link_convex_decomposition_p1" class="col"
|
||||
mesh="forearm_link_convex_decomposition_p1" pos="-0.045 -0.0730 0"
|
||||
euler="1.57 0 0" rgba="0.094 0.48 0.804 1"/>
|
||||
<geom name="forearm_link_convex_decomposition_p2" class="col"
|
||||
mesh="forearm_link_convex_decomposition_p2" pos="-.045 -0.0730 0"
|
||||
euler="1.57 0 0" rgba="0.094 0.48 0.804 1"/>
|
||||
<body name="wam/wrist_yaw_link_right" pos="-0.045 -0.3 0" quat="0.707107 0.707107 0 0">
|
||||
<inertial pos="8.921e-005 0.00435824 -0.00511217"
|
||||
quat="0.630602 0.776093 0.00401969 -0.002372" mass="1.05376"
|
||||
diaginertia="0.000555168 0.00046317 0.000234072"/> <!--this is an approximation-->
|
||||
<joint name="wam/wrist_yaw_joint_right" range="-4.8 1.3" damping="0.55"/>
|
||||
<geom name="wrist_yaw_link_fine" class="viz" mesh="wrist_yaw_link_fine" rgba="1 1 1 0"/>
|
||||
<geom name="wrist_yaw_link_convex_decomposition_p1" class="col"
|
||||
mesh="wrist_yaw_link_convex_decomposition_p1"/>
|
||||
<geom name="wrist_yaw_link_convex_decomposition_p2" class="col"
|
||||
mesh="wrist_yaw_link_convex_decomposition_p2"/>
|
||||
<body name="wam/wrist_pitch_link_right" pos="0 0 0" quat="0.707107 -0.707107 0 0">
|
||||
<inertial pos="-0.00012262 -0.0246834 -0.0170319"
|
||||
quat="0.630602 0.776093 0.00401969 -0.002372" mass="0.517974"
|
||||
diaginertia="0.000555168 0.00046317 0.000234072"/>
|
||||
<joint name="wam/wrist_pitch_joint_right" range="-1.6 1.6" damping="0.11"/>
|
||||
<geom name="wrist_pitch_link_fine" class="viz" mesh="wrist_pitch_link_fine"
|
||||
rgba="1 1 1 0"/>
|
||||
<geom name="wrist_pitch_link_convex_decomposition_p1" rgba="1 0.5 0.313 1"
|
||||
class="col" mesh="wrist_pitch_link_convex_decomposition_p1"/>
|
||||
<geom name="wrist_pitch_link_convex_decomposition_p2" rgba="1 0.5 0.313 1"
|
||||
class="col" mesh="wrist_pitch_link_convex_decomposition_p2"/>
|
||||
<geom name="wrist_pitch_link_convex_decomposition_p3" rgba="1 0.5 0.313 1"
|
||||
class="col" mesh="wrist_pitch_link_convex_decomposition_p3"/>
|
||||
<body name="wam/wrist_palm_link_right" pos="0 0 0" quat="0.707107 0.707107 0 0">
|
||||
<inertial pos="0 0 0.055" quat="0.707107 0 0 0.707107" mass="0.0828613"
|
||||
diaginertia="0.00020683 0.00010859 0.00010851"/>
|
||||
<joint name="wam/palm_yaw_joint_right" range="-2.2 2.2" damping="0.11"/>
|
||||
<geom name="wrist_palm_link_fine" class="viz" mesh="wrist_palm_link_fine"
|
||||
rgba="1 1 1 0"/>
|
||||
<geom name="wrist_palm_link_convex" class="col" mesh="wrist_palm_link_convex"/>
|
||||
<!-- EE=wam/paddle, configure name to the end effector name-->
|
||||
<body name="EE" pos="0 0 0.26" childclass="contact_geom">
|
||||
<geom name="bat" type="cylinder" size="0.075 0.005" rgba="1 0 0 1"
|
||||
quat="0.71 0 0.71 0"/>
|
||||
<geom name="wam/paddle_handle" type="box" size="0.005 0.01 0.05" pos="0 0 -0.08"
|
||||
rgba="1 1 1 1"/>
|
||||
<!-- Extract information for sampling goals.-->
|
||||
<site name="wam/paddle_center" pos="0 0 0" rgba="1 1 1 1" size="0.00001"/>
|
||||
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</mujocoinclue>
|
@ -0,0 +1,38 @@
|
||||
<mujocoinclude>
|
||||
<body name="table_tennis_table" pos="0 0 0">
|
||||
<geom class="contact_geom" name="table_base_1" type="box" size="0.05 0.05 .375" rgba="1 1 1 1"
|
||||
pos="1 0.7 0.375"/>
|
||||
<geom class="contact_geom" name="table_base_2" type="box" size="0.05 0.05 .375" rgba="1 1 1 1"
|
||||
pos="1 -0.7 0.375"/>
|
||||
<geom class="contact_geom" name="table_base_3" type="box" size="0.05 0.05 .375" rgba="1 1 1 1"
|
||||
pos="-1 -0.7 0.375"/>
|
||||
<geom class="contact_geom" name="table_base_4" type="box" size="0.05 0.05 .375" rgba="1 1 1 1"
|
||||
pos="-1 0.7 0.375"/>
|
||||
<body name="table_top" pos="0 0 0.76">
|
||||
<geom class="contact_geom" name="table_tennis_table" type="box" size="1.37 .7625 .01" rgba="0 0 0.5 1"
|
||||
pos="0 0 0"/>
|
||||
<!-- <geom class="contact_geom" name="table_tennis_table_right_side" type="box" size="0.685 .7625 .01"-->
|
||||
<!-- rgba="0.5 0 0 1" pos="0.685 0 0"/>-->
|
||||
<!-- <geom class="contact_geom" name="table_tennis_table_left_side" type="box" size="0.685 .7625 .01"-->
|
||||
<!-- rgba="0 0.5 0 1" pos="-0.685 0 0"/>-->
|
||||
<site name="left_up_corner" pos="-1.37 .7625 0.01" rgba="1 1 1 1" size="0.00001"/>
|
||||
<site name="middle_up_corner" pos="0 .7625 0.01" rgba="1 1 1 1" size="0.00001"/>
|
||||
<site name="left_down_corner" pos="-1.37 -0.7625 0.01" rgba="1 1 1 1" size="0.00001"/>
|
||||
<site name="middle_down_corner" pos="0 -.7625 0.01" rgba="1 1 1 1" size="0.00001"/>
|
||||
<geom class="contact_geom" name="table_tennis_net" type="box" size="0.01 0.915 0.07625"
|
||||
material="floor_plane"
|
||||
rgba="0 0 1 0.5"
|
||||
pos="0 0 0.08625"/>
|
||||
<geom class="contact_geom" name="left_while_line" type="box" size="1.37 .02 .001" rgba="1 1 1 1"
|
||||
pos="0 -0.7425 0.01"/>
|
||||
<geom class="contact_geom" name="center_while_line" type="box" size="1.37 .01 .001" rgba="1 1 1 1"
|
||||
pos="0 0 0.01"/>
|
||||
<geom class="contact_geom" name="right_while_line" type="box" size="1.37 .02 .001" rgba="1 1 1 1"
|
||||
pos="0 0.7425 0.01"/>
|
||||
<geom class="contact_geom" name="right_side_line" type="box" size="0.02 .7625 .001" rgba="1 1 1 1"
|
||||
pos="1.35 0 0.01"/>
|
||||
<geom class="contact_geom" name="left_side_line" type="box" size="0.02 .7625 .001" rgba="1 1 1 1"
|
||||
pos="-1.35 0 0.01"/>
|
||||
</body>
|
||||
</body>
|
||||
</mujocoinclude>
|
@ -0,0 +1,10 @@
|
||||
<mujocoinclude>
|
||||
<body name="target_ball" pos="-1.2 -0.6 1.5">
|
||||
<joint axis="1 0 0" damping="0.0" name="tar:x" pos="0 0 0" stiffness="0" type="slide" frictionloss="0"/>
|
||||
<joint axis="0 1 0" damping="0.0" name="tar:y" pos="0 0 0" stiffness="0" type="slide" frictionloss="0"/>
|
||||
<joint axis="0 0 1" damping="0.0" name="tar:z" pos="0 0 0" stiffness="0" type="slide" frictionloss="0"/>
|
||||
<geom size="0.025 0.025 0.025" type="sphere" condim="4" name="target_ball" rgba="1 1 0 1" mass="0.1"
|
||||
friction="0.1 0.1 0.1" solimp="1 1 0" solref="0.1 0.03"/>
|
||||
<site name="target_ball" pos="0 0 0" size="0.02 0.02 0.02" rgba="1 0 0 1" type="sphere"/>
|
||||
</body>
|
||||
</mujocoinclude>
|
@ -0,0 +1,80 @@
|
||||
<mujocoinclude>
|
||||
<body name="test_ball_table" pos="1 0 4">
|
||||
<joint axis="1 0 0" damping="0.0" name="tar:x_test_ball_table" pos="0 0 0" stiffness="0" type="slide"
|
||||
frictionloss="0"/>
|
||||
<joint axis="0 1 0" damping="0.0" name="tar:y_test_ball_table" pos="0 0 0" stiffness="0" type="slide"
|
||||
frictionloss="0"/>
|
||||
<joint axis="0 0 1" damping="0.0" name="tar:z_test_ball_table" pos="0 0 0" stiffness="0" type="slide"
|
||||
frictionloss="0"/>
|
||||
<geom size="0.025 0.025 0.025" type="sphere" condim="4" name="test_ball_table" rgba="0 1 0 1" mass="0.1"
|
||||
friction="0.1 0.1 0.1" solimp="1 1 0" solref="0.1 0.03"/>
|
||||
<site name="test_ball_table" pos="0 0 0" size="0.02 0.02 0.02" rgba="0 1 0 1" type="sphere"/>
|
||||
</body>
|
||||
<body name="test_ball_net" pos="0 0 4">
|
||||
<joint axis="1 0 0" damping="0.0" name="tar:x_test_ball_net" pos="0 0 0" stiffness="0" type="slide"
|
||||
frictionloss="0"/>
|
||||
<joint axis="0 1 0" damping="0.0" name="tar:y_test_ball_net" pos="0 0 0" stiffness="0" type="slide"
|
||||
frictionloss="0"/>
|
||||
<joint axis="0 0 1" damping="0.0" name="tar:z_test_ball_net" pos="0 0 0" stiffness="0" type="slide"
|
||||
frictionloss="0"/>
|
||||
<geom size="0.025 0.025 0.025" type="sphere" condim="4" name="test_ball_net" rgba="1 1 0 1" mass="0.1"
|
||||
friction="0.1 0.1 0.1" solimp="1 1 0" solref="0.1 0.03"/>
|
||||
<site name="test_ball_net" pos="0 0 0" size="0.02 0.02 0.02" rgba="0 1 0 1" type="sphere"/>
|
||||
</body>
|
||||
<body name="test_ball_racket_0" pos="2.54919187 0.81642672 4">
|
||||
<joint axis="1 0 0" damping="0.0" name="tar:x_test_ball_racket_0" pos="0 0 0" stiffness="0" type="slide"
|
||||
frictionloss="0"/>
|
||||
<joint axis="0 1 0" damping="0.0" name="tar:y_test_ball_racket_0" pos="0 0 0" stiffness="0" type="slide"
|
||||
frictionloss="0"/>
|
||||
<joint axis="0 0 1" damping="0.0" name="tar:z_test_ball_racket_0" pos="0 0 0" stiffness="0" type="slide"
|
||||
frictionloss="0"/>
|
||||
<geom size="0.025 0.025 0.025" type="sphere" condim="4" name="test_ball_racket_0" rgba="1 0 1 1" mass="0.1"
|
||||
friction="0.1 0.1 0.1" solimp="1 1 0" solref="0.1 0.03"/>
|
||||
<site name="test_ball_racket_0" pos="0 0 0" size="0.02 0.02 0.02" rgba="0 1 0 1" type="sphere"/>
|
||||
</body>
|
||||
<body name="test_ball_racket_1" pos="2.54919187 0.81642672 4.5">
|
||||
<joint axis="1 0 0" damping="0.0" name="tar:x_test_ball_racket_1" pos="0 0 0" stiffness="0" type="slide"
|
||||
frictionloss="0"/>
|
||||
<joint axis="0 1 0" damping="0.0" name="tar:y_test_ball_racket_1" pos="0 0 0" stiffness="0" type="slide"
|
||||
frictionloss="0"/>
|
||||
<joint axis="0 0 1" damping="0.0" name="tar:z_test_ball_racket_1" pos="0 0 0" stiffness="0" type="slide"
|
||||
frictionloss="0"/>
|
||||
<geom size="0.025 0.025 0.025" type="sphere" condim="4" name="test_ball_racket_1" rgba="1 0 1 1" mass="0.1"
|
||||
friction="0.1 0.1 0.1" solimp="1 1 0" solref="0.1 0.03"/>
|
||||
<site name="test_ball_racket_1" pos="0 0 0" size="0.02 0.02 0.02" rgba="0 1 0 1" type="sphere"/>
|
||||
</body>
|
||||
<body name="test_ball_racket_2" pos="2.54919187 0.81642672 3">
|
||||
<joint axis="1 0 0" damping="0.0" name="tar:x_test_ball_racket_2" pos="0 0 0" stiffness="0" type="slide"
|
||||
frictionloss="0"/>
|
||||
<joint axis="0 1 0" damping="0.0" name="tar:y_test_ball_racket_2" pos="0 0 0" stiffness="0" type="slide"
|
||||
frictionloss="0"/>
|
||||
<joint axis="0 0 1" damping="0.0" name="tar:z_test_ball_racket_2" pos="0 0 0" stiffness="0" type="slide"
|
||||
frictionloss="0"/>
|
||||
<geom size="0.025 0.025 0.025" type="sphere" condim="4" name="test_ball_racket_2" rgba="1 0 1 1" mass="0.1"
|
||||
friction="0.1 0.1 0.1" solimp="1 1 0" solref="0.1 0.03"/>
|
||||
<site name="test_ball_racket" pos="0 0 0" size="0.02 0.02 0.02" rgba="0 1 0 1" type="sphere"/>
|
||||
</body>
|
||||
<body name="test_ball_racket_3" pos="2.54919187 0.81642672 10">
|
||||
<joint axis="1 0 0" damping="0.0" name="tar:x_test_ball_racket_3" pos="0 0 0" stiffness="0" type="slide"
|
||||
frictionloss="0"/>
|
||||
<joint axis="0 1 0" damping="0.0" name="tar:y_test_ball_racket_3" pos="0 0 0" stiffness="0" type="slide"
|
||||
frictionloss="0"/>
|
||||
<joint axis="0 0 1" damping="0.0" name="tar:z_test_ball_racket_3" pos="0 0 0" stiffness="0" type="slide"
|
||||
frictionloss="0"/>
|
||||
<geom size="0.025 0.025 0.025" type="sphere" condim="4" name="test_ball_racket_3" rgba="1 0 1 1" mass="0.1"
|
||||
friction="0.1 0.1 0.1" solimp="1 1 0" solref="0.1 0.03"/>
|
||||
<site name="test_ball_racket_3" pos="0 0 0" size="0.02 0.02 0.02" rgba="0 1 0 1" type="sphere"/>
|
||||
</body>
|
||||
<!-- <body name="test_ball_racket_4" pos="2.54919187 0.81642672 4">-->
|
||||
<!-- <joint axis="1 0 0" damping="0.0" name="tar:x_test_ball_racket_4" pos="0 0 0" stiffness="0" type="slide"-->
|
||||
<!-- frictionloss="0"/>-->
|
||||
<!-- <joint axis="0 1 0" damping="0.0" name="tar:y_test_ball_racket_4" pos="0 0 0" stiffness="0" type="slide"-->
|
||||
<!-- frictionloss="0"/>-->
|
||||
<!-- <joint axis="0 0 1" damping="0.0" name="tar:z_test_ball_racket_4" pos="0 0 0" stiffness="0" type="slide"-->
|
||||
<!-- frictionloss="0"/>-->
|
||||
<!-- <geom size="0.025 0.025 0.025" type="sphere" condim="4" name="test_ball_racket_4" rgba="1 0 0 1" mass="0.1"-->
|
||||
<!-- friction="0.1 0.1 0.1" solimp="1 1 0" solref="0.1 0.03"/>-->
|
||||
<!-- <site name="test_ball_racket_4" pos="0 0 0" size="0.02 0.02 0.02" rgba="0 1 0 1" type="sphere"/>-->
|
||||
<!-- </body>-->
|
||||
|
||||
</mujocoinclude>
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -0,0 +1,19 @@
|
||||
<mujocoinclude>
|
||||
<actuator>
|
||||
|
||||
<!-- <position ctrlrange="-2.6 2.6" joint="wam/base_yaw_joint_right" kp="100.0" />-->
|
||||
<!-- <position ctrlrange="-1.985 1.985" joint="wam/shoulder_pitch_joint_right" kp="162.0" />-->
|
||||
<!-- <position ctrlrange="-2.8 2.8" joint="wam/shoulder_yaw_joint_right" kp="100.0" />-->
|
||||
<!-- <position ctrlrange="-0.9 3.14159" joint="wam/elbow_pitch_joint_right" kp="122.0" />-->
|
||||
<!-- <position ctrlrange="-4.55 1.25" joint="wam/wrist_yaw_joint_right" kp="100.0" />-->
|
||||
<!-- <position ctrlrange="-1.5707 1.5707" joint="wam/wrist_pitch_joint_right" kp="102.0" />-->
|
||||
<!-- <position ctrlrange="-3 3" joint="wam/palm_yaw_joint_right" kp="100.0" />-->
|
||||
<position ctrlrange="-2.6 2.6" joint="wam/base_yaw_joint_right" kp="151.0"/>
|
||||
<position ctrlrange="-1.985 1.985" joint="wam/shoulder_pitch_joint_right" kp="125.0"/>
|
||||
<position ctrlrange="-2.8 2.8" joint="wam/shoulder_yaw_joint_right" kp="122.0"/>
|
||||
<position ctrlrange="-0.9 3.14159" joint="wam/elbow_pitch_joint_right" kp="121.0"/>
|
||||
<position ctrlrange="-4.55 1.25" joint="wam/wrist_yaw_joint_right" kp="99.0"/>
|
||||
<position ctrlrange="-1.5707 1.5707" joint="wam/wrist_pitch_joint_right" kp="103.0"/>
|
||||
<position ctrlrange="-3 3" joint="wam/palm_yaw_joint_right" kp="99.0"/>
|
||||
</actuator>
|
||||
</mujocoinclude>
|
@ -0,0 +1,49 @@
|
||||
<mujocoinclude>
|
||||
<default>
|
||||
<default class="wam">
|
||||
<joint type="hinge" limited="true" pos="0 0 0" axis="0 0 1"/>
|
||||
</default>
|
||||
<default class="viz">
|
||||
<geom type="mesh" contype="0" conaffinity="0" group="1" rgba="1 1 1 1"/>
|
||||
</default>
|
||||
<default class="col">
|
||||
<geom type="mesh" contype="0" conaffinity="1" group="0" rgba="1 1 1 1"/>
|
||||
</default>
|
||||
<default class="contact_geom">
|
||||
<geom condim="4" friction="0.1 0.1 0.1" margin="0" solimp="1 1 0" solref="0.1 0.03"/>
|
||||
<!-- <geom condim="4" friction="0 0 0" margin="0" solimp="1 1 0" solref="0.01 1.1"/>-->
|
||||
|
||||
</default>
|
||||
</default>
|
||||
<asset>
|
||||
<mesh file="base_link_fine.stl"/>
|
||||
<mesh file="base_link_convex.stl"/>
|
||||
<mesh file="shoulder_link_fine.stl"/>
|
||||
<mesh file="shoulder_link_convex_decomposition_p1.stl"/>
|
||||
<mesh file="shoulder_link_convex_decomposition_p2.stl"/>
|
||||
<mesh file="shoulder_link_convex_decomposition_p3.stl"/>
|
||||
<mesh file="shoulder_pitch_link_fine.stl"/>
|
||||
<mesh file="shoulder_pitch_link_convex.stl"/>
|
||||
<mesh file="upper_arm_link_fine.stl"/>
|
||||
<mesh file="upper_arm_link_convex_decomposition_p1.stl"/>
|
||||
<mesh file="upper_arm_link_convex_decomposition_p2.stl"/>
|
||||
<mesh file="elbow_link_fine.stl"/>
|
||||
<mesh file="elbow_link_convex.stl"/>
|
||||
<mesh file="forearm_link_fine.stl"/>
|
||||
<mesh file="forearm_link_convex_decomposition_p1.stl"/>
|
||||
<mesh file="forearm_link_convex_decomposition_p2.stl"/>
|
||||
<mesh file="wrist_yaw_link_fine.stl"/>
|
||||
<mesh file="wrist_yaw_link_convex_decomposition_p1.stl"/>
|
||||
<mesh file="wrist_yaw_link_convex_decomposition_p2.stl"/>
|
||||
<mesh file="wrist_pitch_link_fine.stl"/>
|
||||
<mesh file="wrist_pitch_link_convex_decomposition_p1.stl"/>
|
||||
<mesh file="wrist_pitch_link_convex_decomposition_p2.stl"/>
|
||||
<mesh file="wrist_pitch_link_convex_decomposition_p3.stl"/>
|
||||
<mesh file="wrist_palm_link_fine.stl"/>
|
||||
<mesh file="wrist_palm_link_convex.stl"/>
|
||||
|
||||
<texture builtin="checker" height="512" name="texplane" rgb1=".2 .3 .4" rgb2=".1 0.15 0.2" type="2d"
|
||||
width="512"/>
|
||||
<material name="floor_plane" reflectance="0.5" texrepeat="1 1" texture="texplane" texuniform="true"/>
|
||||
</asset>
|
||||
</mujocoinclude>
|
@ -0,0 +1,41 @@
|
||||
<mujoco model="table_tennis(v0.1)">
|
||||
<compiler angle="radian" coordinate="local" meshdir="meshes/" />
|
||||
|
||||
<option gravity="0 0 -9.81" timestep="0.002">
|
||||
<flag warmstart="enable" />
|
||||
</option>
|
||||
|
||||
|
||||
<custom>
|
||||
<numeric data="0 0 0 0 0 0 0" name="START_ANGLES" />
|
||||
</custom>
|
||||
|
||||
|
||||
<include file="shared.xml" />
|
||||
|
||||
<worldbody>
|
||||
<light cutoff="60" diffuse="1 1 1" dir="-.1 -.2 -1.3" directional="true" exponent="1" pos=".1 .2 1.3" specular=".1 .1 .1" />
|
||||
<geom conaffinity="1" contype="1" material="floor_plane" name="floor" pos="0 0 0" size="10 5 1" type="plane" />
|
||||
|
||||
|
||||
<include file="include_table.xml" />
|
||||
|
||||
|
||||
|
||||
<include file="include_barrett_wam_7dof_right.xml" />
|
||||
|
||||
<include file="include_target_ball.xml" />
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
</worldbody>
|
||||
|
||||
|
||||
|
||||
|
||||
<include file="right_arm_actuator.xml" />
|
||||
|
||||
|
||||
</mujoco>
|
233
alr_envs/mujoco/gym_table_tennis/envs/table_tennis_env.py
Normal file
233
alr_envs/mujoco/gym_table_tennis/envs/table_tennis_env.py
Normal file
@ -0,0 +1,233 @@
|
||||
import numpy as np
|
||||
from gym import spaces
|
||||
from gym.envs.robotics import robot_env, utils
|
||||
# import xml.etree.ElementTree as ET
|
||||
from alr_envs.mujoco.gym_table_tennis.utils.rewards.hierarchical_reward import HierarchicalRewardTableTennis
|
||||
# import glfw
|
||||
from alr_envs.mujoco.gym_table_tennis.utils.experiment import ball_initialize
|
||||
from pathlib import Path
|
||||
import os
|
||||
|
||||
|
||||
class TableTennisEnv(robot_env.RobotEnv):
|
||||
"""Class for Table Tennis environment.
|
||||
"""
|
||||
def __init__(self, n_substeps=1,
|
||||
model_path=None,
|
||||
initial_qpos=None,
|
||||
initial_ball_state=None,
|
||||
config=None,
|
||||
reward_obj=None
|
||||
):
|
||||
"""Initializes a new mujoco based Table Tennis environment.
|
||||
|
||||
Args:
|
||||
model_path (string): path to the environments XML file
|
||||
initial_qpos (dict): a dictionary of joint names and values that define the initial
|
||||
n_actions: Number of joints
|
||||
n_substeps (int): number of substeps the simulation runs on every call to step
|
||||
scale (double): limit maximum change in position
|
||||
initial_ball_state: to reset the ball state
|
||||
"""
|
||||
# self.config = config.config
|
||||
if model_path is None:
|
||||
path_cws = Path.cwd()
|
||||
print(path_cws)
|
||||
current_dir = Path(os.path.split(os.path.realpath(__file__))[0])
|
||||
table_tennis_env_xml_path = current_dir / "robotics"/"assets"/"table_tennis"/"table_tennis_env.xml"
|
||||
model_path = str(table_tennis_env_xml_path)
|
||||
self.config = config
|
||||
action_space = self.config['trajectory']['args']['action_space']
|
||||
time_step = self.config['mujoco_sim_env']['args']["time_step"]
|
||||
if initial_qpos is None:
|
||||
initial_qpos = self.config['robot_config']['args']['initial_qpos']
|
||||
|
||||
# TODO should read all configuration in config
|
||||
assert initial_qpos is not None, "Must initialize the initial q position of robot arm"
|
||||
n_actions = 7
|
||||
self.initial_qpos_value = np.array(list(initial_qpos.values())).copy()
|
||||
# # change time step in .xml file
|
||||
# tree = ET.parse(model_path)
|
||||
# root = tree.getroot()
|
||||
# for option in root.findall('option'):
|
||||
# option.set("timestep", str(time_step))
|
||||
#
|
||||
# tree.write(model_path)
|
||||
|
||||
super(TableTennisEnv, self).__init__(
|
||||
model_path=model_path, n_substeps=n_substeps, n_actions=n_actions,
|
||||
initial_qpos=initial_qpos)
|
||||
|
||||
if action_space:
|
||||
self.action_space = spaces.Box(low=np.array([-2.6, -2.0, -2.8, -0.9, -4.8, -1.6, -2.2]),
|
||||
high=np.array([2.6, 2.0, 2.8, 3.1, 1.3, 1.6, 2.2]),
|
||||
dtype='float64')
|
||||
else:
|
||||
self.action_space = spaces.Box(low=np.array([-np.inf] * 7),
|
||||
high=np.array([-np.inf] * 7),
|
||||
dtype='float64')
|
||||
self.scale = None
|
||||
self.desired_pos = None
|
||||
self.n_actions = n_actions
|
||||
self.action = None
|
||||
self.time_step = time_step
|
||||
self.paddle_center_pos = self.sim.data.get_site_xpos('wam/paddle_center')
|
||||
if reward_obj is None:
|
||||
self.reward_obj = HierarchicalRewardTableTennis()
|
||||
else:
|
||||
self.reward_obj = reward_obj
|
||||
|
||||
if initial_ball_state is not None:
|
||||
self.initial_ball_state = initial_ball_state
|
||||
else:
|
||||
self.initial_ball_state = ball_initialize(random=False)
|
||||
self.target_ball_pos = self.sim.data.get_site_xpos("target_ball")
|
||||
self.racket_center_pos = self.sim.data.get_site_xpos("wam/paddle_center")
|
||||
|
||||
def close(self):
|
||||
if self.viewer is not None:
|
||||
glfw.destroy_window(self.viewer.window)
|
||||
# self.viewer.window.close()
|
||||
self.viewer = None
|
||||
self._viewers = {}
|
||||
|
||||
# GoalEnv methods
|
||||
# ----------------------------
|
||||
def compute_reward(self, achieved_goal, goal, info):
|
||||
# reset the reward, if action valid
|
||||
# right_court_contact_obj = ["target_ball", "table_tennis_table_right_side"]
|
||||
# right_court_contact_detector = self.reward_obj.contact_detection(self, right_court_contact_obj)
|
||||
# if right_court_contact_detector:
|
||||
# print("can detect the table ball contact")
|
||||
self.reward_obj.total_reward = 0
|
||||
# Stage 1 Hitting
|
||||
self.reward_obj.hitting(self)
|
||||
# if not hitted, return the highest reward
|
||||
if not self.reward_obj.goal_achievement:
|
||||
return self.reward_obj.highest_reward
|
||||
# # Stage 2 Right Table Contact
|
||||
# self.reward_obj.right_table_contact(self)
|
||||
# if not self.reward_obj.goal_achievement:
|
||||
# return self.reward_obj.highest_reward
|
||||
# # Stage 2 Net Contact
|
||||
# self.reward_obj.net_contact(self)
|
||||
# if not self.reward_obj.goal_achievement:
|
||||
# return self.reward_obj.highest_reward
|
||||
# Stage 3 Opponent court Contact
|
||||
# self.reward_obj.landing_on_opponent_court(self)
|
||||
# if not self.reward_obj.goal_achievement:
|
||||
# print("self.reward_obj.highest_reward: ", self.reward_obj.highest_reward)
|
||||
# TODO
|
||||
self.reward_obj.target_achievement(self)
|
||||
return self.reward_obj.highest_reward
|
||||
|
||||
def _reset_sim(self):
|
||||
self.sim.set_state(self.initial_state)
|
||||
[initial_x, initial_y, initial_z, v_x, v_y, v_z] = self.initial_ball_state
|
||||
self.sim.data.set_joint_qpos('tar:x', initial_x)
|
||||
self.sim.data.set_joint_qpos('tar:y', initial_y)
|
||||
self.sim.data.set_joint_qpos('tar:z', initial_z)
|
||||
self.energy_corrected = True
|
||||
self.give_reflection_reward = False
|
||||
|
||||
# velocity is positive direction
|
||||
self.sim.data.set_joint_qvel('tar:x', v_x)
|
||||
self.sim.data.set_joint_qvel('tar:y', v_y)
|
||||
self.sim.data.set_joint_qvel('tar:z', v_z)
|
||||
|
||||
# Apply gravity compensation
|
||||
if self.sim.data.qfrc_applied[:7] is not self.sim.data.qfrc_bias[:7]:
|
||||
self.sim.data.qfrc_applied[:7] = self.sim.data.qfrc_bias[:7]
|
||||
self.sim.forward()
|
||||
return True
|
||||
|
||||
def _env_setup(self, initial_qpos):
|
||||
for name, value in initial_qpos.items():
|
||||
self.sim.data.set_joint_qpos(name, value)
|
||||
|
||||
# Apply gravity compensation
|
||||
if self.sim.data.qfrc_applied[:7] is not self.sim.data.qfrc_bias[:7]:
|
||||
self.sim.data.qfrc_applied[:7] = self.sim.data.qfrc_bias[:7]
|
||||
self.sim.forward()
|
||||
|
||||
# Get the target position
|
||||
self.initial_paddle_center_xpos = self.sim.data.get_site_xpos('wam/paddle_center').copy()
|
||||
self.initial_paddle_center_vel = None # self.sim.get_site_
|
||||
|
||||
def _sample_goal(self):
|
||||
goal = self.initial_paddle_center_xpos[:3] + self.np_random.uniform(-0.2, 0.2, size=3)
|
||||
return goal.copy()
|
||||
|
||||
def _get_obs(self):
|
||||
|
||||
# positions of racket center
|
||||
paddle_center_pos = self.sim.data.get_site_xpos('wam/paddle_center')
|
||||
ball_pos = self.sim.data.get_site_xpos("target_ball")
|
||||
|
||||
dt = self.sim.nsubsteps * self.sim.model.opt.timestep
|
||||
paddle_center_velp = self.sim.data.get_site_xvelp('wam/paddle_center') * dt
|
||||
robot_qpos, robot_qvel = utils.robot_get_obs(self.sim)
|
||||
|
||||
wrist_state = robot_qpos[-3:]
|
||||
wrist_vel = robot_qvel[-3:] * dt # change to a scalar if the gripper is made symmetric
|
||||
|
||||
# achieved_goal = paddle_body_EE_pos
|
||||
obs = np.concatenate([
|
||||
paddle_center_pos, paddle_center_velp, wrist_state, wrist_vel
|
||||
])
|
||||
|
||||
out_dict = {
|
||||
'observation': obs.copy(),
|
||||
'achieved_goal': paddle_center_pos.copy(),
|
||||
'desired_goal': self.goal.copy(),
|
||||
'q_pos': self.sim.data.qpos[:].copy(),
|
||||
"ball_pos": ball_pos.copy(),
|
||||
# "hitting_flag": self.reward_obj.hitting_flag
|
||||
}
|
||||
|
||||
return out_dict
|
||||
|
||||
def _step_callback(self):
|
||||
pass
|
||||
|
||||
def _set_action(self, action):
|
||||
# Apply gravity compensation
|
||||
if self.sim.data.qfrc_applied[:7] is not self.sim.data.qfrc_bias[:7]:
|
||||
self.sim.data.qfrc_applied[:7] = self.sim.data.qfrc_bias[:7]
|
||||
# print("set action process running")
|
||||
assert action.shape == (self.n_actions,)
|
||||
self.action = action.copy() # ensure that we don't change the action outside of this scope
|
||||
pos_ctrl = self.action[:] # limit maximum change in position
|
||||
pos_ctrl = np.clip(pos_ctrl, self.action_space.low, self.action_space.high)
|
||||
|
||||
# get desired trajectory
|
||||
self.sim.data.qpos[:7] = pos_ctrl
|
||||
self.sim.forward()
|
||||
self.desired_pos = self.sim.data.get_site_xpos('wam/paddle_center').copy()
|
||||
|
||||
self.sim.data.ctrl[:] = pos_ctrl
|
||||
|
||||
def _is_success(self, achieved_goal, desired_goal):
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
render_mode = "human" # "human" or "partial" or "final"
|
||||
env = TableTennisEnv()
|
||||
env.reset()
|
||||
# env.render(mode=render_mode)
|
||||
|
||||
for i in range(200):
|
||||
# objective.load_result("/tmp/cma")
|
||||
# test with random actions
|
||||
ac = 2 * env.action_space.sample()
|
||||
# ac[0] += np.pi/2
|
||||
obs, rew, d, info = env.step(ac)
|
||||
env.render(mode=render_mode)
|
||||
|
||||
print(rew)
|
||||
|
||||
if d:
|
||||
break
|
||||
|
||||
env.close()
|
0
alr_envs/mujoco/gym_table_tennis/utils/__init__.py
Normal file
0
alr_envs/mujoco/gym_table_tennis/utils/__init__.py
Normal file
83
alr_envs/mujoco/gym_table_tennis/utils/experiment.py
Normal file
83
alr_envs/mujoco/gym_table_tennis/utils/experiment.py
Normal file
@ -0,0 +1,83 @@
|
||||
import numpy as np
|
||||
from gym.utils import seeding
|
||||
from alr_envs.mujoco.gym_table_tennis.utils.util import read_yaml, read_json
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
def ball_initialize(random=False, scale=False, context_range=None, scale_value=None):
|
||||
if random:
|
||||
if scale:
|
||||
# if scale_value is None:
|
||||
scale_value = context_scale_initialize(context_range)
|
||||
v_x, v_y, v_z = [2.5, 2, 0.5] * scale_value
|
||||
dx = 1
|
||||
dy = 0
|
||||
dz = 0.05
|
||||
else:
|
||||
seed = None
|
||||
np_random, seed = seeding.np_random(seed)
|
||||
dx = np_random.uniform(-0.1, 0.1)
|
||||
dy = np_random.uniform(-0.1, 0.1)
|
||||
dz = np_random.uniform(-0.1, 0.1)
|
||||
|
||||
v_x = np_random.uniform(1.7, 1.8)
|
||||
v_y = np_random.uniform(0.7, 0.8)
|
||||
v_z = np_random.uniform(0.1, 0.2)
|
||||
# print(dx, dy, dz, v_x, v_y, v_z)
|
||||
# else:
|
||||
# dx = -0.1
|
||||
# dy = 0.05
|
||||
# dz = 0.05
|
||||
# v_x = 1.5
|
||||
# v_y = 0.7
|
||||
# v_z = 0.06
|
||||
# initial_x = -0.6 + dx
|
||||
# initial_y = -0.3 + dy
|
||||
# initial_z = 0.8 + dz
|
||||
else:
|
||||
if scale:
|
||||
v_x, v_y, v_z = [2.5, 2, 0.5] * scale_value
|
||||
else:
|
||||
v_x = 2.5
|
||||
v_y = 2
|
||||
v_z = 0.5
|
||||
dx = 1
|
||||
dy = 0
|
||||
dz = 0.05
|
||||
|
||||
initial_x = 0 + dx
|
||||
initial_y = -0.2 + dy
|
||||
initial_z = 0.3 + dz
|
||||
# print("initial ball state: ", initial_x, initial_y, initial_z, v_x, v_y, v_z)
|
||||
initial_ball_state = np.array([initial_x, initial_y, initial_z, v_x, v_y, v_z])
|
||||
return initial_ball_state
|
||||
|
||||
|
||||
def context_scale_initialize(range):
|
||||
"""
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
low, high = range
|
||||
scale = np.random.uniform(low, high, 1)
|
||||
return scale
|
||||
|
||||
|
||||
def config_handle_generation(config_file_path):
|
||||
"""Generate config handle for multiprocessing
|
||||
|
||||
Args:
|
||||
config_file_path:
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
cfg_fname = Path(config_file_path)
|
||||
# .json and .yml file
|
||||
if cfg_fname.suffix == ".json":
|
||||
config = read_json(cfg_fname)
|
||||
elif cfg_fname.suffix == ".yml":
|
||||
config = read_yaml(cfg_fname)
|
||||
|
||||
return config
|
@ -0,0 +1,402 @@
|
||||
import numpy as np
|
||||
import logging
|
||||
|
||||
|
||||
class HierarchicalRewardTableTennis(object):
|
||||
"""Class for hierarchical reward function for table tennis experiment.
|
||||
|
||||
Return Highest Reward.
|
||||
Reward = 0
|
||||
Step 1: Action Valid. Upper Bound 0
|
||||
[-∞, 0]
|
||||
Reward += -1 * |hit_duration - hit_duration_threshold| * |hit_duration < hit_duration_threshold| * 10
|
||||
Step 2: Hitting. Upper Bound 2
|
||||
if hitting:
|
||||
[0, 2]
|
||||
Reward = 2 * (1 - tanh(|shortest_hitting_dist|))
|
||||
if not hitting:
|
||||
[0, 0.2]
|
||||
Reward = 2 * (1 - tanh(|shortest_hitting_dist|))
|
||||
Step 3: Target Point Achievement. Upper Bound 6
|
||||
[0, 4]
|
||||
if table_contact_detector:
|
||||
Reward += 1
|
||||
Reward += (1 - tanh(|shortest_hitting_dist|)) * 2
|
||||
if contact_coordinate[0] < 0:
|
||||
Reward += 1
|
||||
else:
|
||||
Reward += 0
|
||||
elif:
|
||||
Reward += (1 - tanh(|shortest_hitting_dist|))
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.reward = None
|
||||
self.goal_achievement = False
|
||||
self.total_reward = 0
|
||||
self.shortest_hitting_dist = 1000
|
||||
self.highest_reward = -1000
|
||||
self.lowest_corner_dist = 100
|
||||
self.right_court_contact_detector = False
|
||||
self.table_contact_detector = False
|
||||
self.floor_contact_detector = False
|
||||
self.radius = 0.025
|
||||
self.min_ball_x_pos = 100
|
||||
self.hit_contact_detector = False
|
||||
self.net_contact_detector = False
|
||||
self.ratio = 1
|
||||
self.lowest_z = 100
|
||||
self.target_flag = False
|
||||
self.dist_target_virtual = 100
|
||||
self.ball_z_pos_lowest = 100
|
||||
self.hitting_flag = False
|
||||
self.hitting_time_point = None
|
||||
self.ctxt_dim = None
|
||||
self.context_range_bounds = None
|
||||
# self.ctxt_out_of_range_punishment = None
|
||||
# self.ctxt_in_side_of_range_punishment = None
|
||||
#
|
||||
# def check_where_invalid(self, ctxt, context_range_bounds, set_to_valid_region=False):
|
||||
# idx_max = []
|
||||
# idx_min = []
|
||||
# for dim in range(self.ctxt_dim):
|
||||
# min_dim = context_range_bounds[0][dim]
|
||||
# max_dim = context_range_bounds[1][dim]
|
||||
# idx_max_c = np.where(ctxt[:, dim] > max_dim)[0]
|
||||
# idx_min_c = np.where(ctxt[:, dim] < min_dim)[0]
|
||||
# if set_to_valid_region:
|
||||
# if idx_max_c.shape[0] != 0:
|
||||
# ctxt[idx_max_c, dim] = max_dim
|
||||
# if idx_min_c.shape[0] != 0:
|
||||
# ctxt[idx_min_c, dim] = min_dim
|
||||
# idx_max.append(idx_max_c)
|
||||
# idx_min.append(idx_min_c)
|
||||
# return idx_max, idx_min, ctxt
|
||||
|
||||
def check_valid(self, scale, context_range_bounds):
|
||||
|
||||
min_dim = context_range_bounds[0][0]
|
||||
max_dim = context_range_bounds[1][0]
|
||||
valid = (scale < max_dim) and (scale > min_dim)
|
||||
return valid
|
||||
|
||||
@classmethod
|
||||
def goal_distance(cls, goal_a, goal_b):
|
||||
assert goal_a.shape == goal_b.shape
|
||||
return np.linalg.norm(goal_a - goal_b, axis=-1)
|
||||
|
||||
def refresh_highest_reward(self):
|
||||
if self.total_reward >= self.highest_reward:
|
||||
self.highest_reward = self.total_reward
|
||||
|
||||
def duration_valid(self):
|
||||
pass
|
||||
|
||||
def huge_value_unstable(self):
|
||||
self.total_reward += -10
|
||||
self.highest_reward = -1
|
||||
|
||||
def context_valid(self, context):
|
||||
valid = self.check_valid(context.copy(), context_range_bounds=self.context_range_bounds)
|
||||
# when using dirac punishments
|
||||
if valid:
|
||||
self.total_reward += 1 # If Action Valid and Context Valid, total_reward = 0
|
||||
else:
|
||||
self.total_reward += 0
|
||||
self.refresh_highest_reward()
|
||||
|
||||
|
||||
|
||||
# If in the ctxt, add 1, otherwise, 0
|
||||
|
||||
def action_valid(self, durations=None):
|
||||
"""Ensure the execution of the robot movement with parameters which are in a valid domain.
|
||||
|
||||
Time should always be positive,
|
||||
the joint position of the robot should be a subset of [−π, π].
|
||||
if all parameters are valid, the robot gets a zero score,
|
||||
otherwise it gets a negative score proportional to how much it is beyond the valid parameter domain.
|
||||
|
||||
Returns:
|
||||
rewards: if valid, reward is equal to 0.
|
||||
if not valid, reward is negative and proportional to the distance beyond the valid parameter domain
|
||||
"""
|
||||
assert durations.shape[0] == 2, "durations type should be np.array and the shape should be 2"
|
||||
# pre_duration = durations[0]
|
||||
hit_duration = durations[1]
|
||||
# pre_duration_thres = 0.01
|
||||
hit_duration_thres = 1
|
||||
# self.goal_achievement = np.all(
|
||||
# [(pre_duration > pre_duration_thres), (hit_duration > hit_duration_thres), (0.3 < pre_duration < 0.6)])
|
||||
self.goal_achievement = (hit_duration > hit_duration_thres)
|
||||
if self.goal_achievement:
|
||||
self.total_reward = -1
|
||||
self.goal_achievement = True
|
||||
else:
|
||||
# self.total_reward += -1 * ((np.abs(pre_duration - pre_duration_thres) * int(
|
||||
# pre_duration < pre_duration_thres) + np.abs(hit_duration - hit_duration_thres) * int(
|
||||
# hit_duration < hit_duration_thres)) * 10)
|
||||
self.total_reward = -1 * ((np.abs(hit_duration - hit_duration_thres) * int(
|
||||
hit_duration < hit_duration_thres)) * 10)
|
||||
self.total_reward += -1
|
||||
self.goal_achievement = False
|
||||
self.refresh_highest_reward()
|
||||
|
||||
def motion_penalty(self, action, high_motion_penalty):
|
||||
"""Protects the robot from high acceleration and dangerous movement.
|
||||
"""
|
||||
if not high_motion_penalty:
|
||||
reward_ctrl = - 0.05 * np.square(action).sum()
|
||||
else:
|
||||
reward_ctrl = - 0.075 * np.square(action).sum()
|
||||
self.total_reward += reward_ctrl
|
||||
self.refresh_highest_reward()
|
||||
self.goal_achievement = True
|
||||
|
||||
def hitting(self, env): # , target_ball_pos, racket_center_pos, hit_contact_detector=False
|
||||
"""Hitting reward calculation
|
||||
|
||||
If racket successfully hit the ball, the reward +1
|
||||
Otherwise calculate the distance between the center of racket and the center of ball,
|
||||
reward = tanh(r/dist) if dist<1 reward almost 2 , if dist >= 1 reward is between [0, 0.2]
|
||||
|
||||
|
||||
Args:
|
||||
env:
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
|
||||
hit_contact_obj = ["target_ball", "bat"]
|
||||
target_ball_pos = env.target_ball_pos
|
||||
racket_center_pos = env.racket_center_pos
|
||||
# hit contact detection
|
||||
# Record the hitting history
|
||||
self.hitting_flag = False
|
||||
if not self.hit_contact_detector:
|
||||
self.hit_contact_detector = self.contact_detection(env, hit_contact_obj)
|
||||
if self.hit_contact_detector:
|
||||
print("First time detect hitting")
|
||||
self.hitting_flag = True
|
||||
if self.hit_contact_detector:
|
||||
|
||||
# TODO
|
||||
dist = self.goal_distance(target_ball_pos, racket_center_pos)
|
||||
if dist < 0:
|
||||
dist = 0
|
||||
# print("goal distance is:", dist)
|
||||
if dist <= self.shortest_hitting_dist:
|
||||
self.shortest_hitting_dist = dist
|
||||
# print("shortest_hitting_dist is:", self.shortest_hitting_dist)
|
||||
# Keep the shortest hitting distance.
|
||||
dist_reward = 2 * (1 - np.tanh(np.abs(self.shortest_hitting_dist)))
|
||||
|
||||
# TODO sparse
|
||||
# dist_reward = 2
|
||||
|
||||
self.total_reward += dist_reward
|
||||
self.goal_achievement = True
|
||||
|
||||
# if self.hitting_time_point is not None and self.hitting_time_point > 600:
|
||||
# self.total_reward += 1
|
||||
|
||||
else:
|
||||
dist = self.goal_distance(target_ball_pos, racket_center_pos)
|
||||
if dist <= self.shortest_hitting_dist:
|
||||
self.shortest_hitting_dist = dist
|
||||
dist_reward = 1 - np.tanh(self.shortest_hitting_dist)
|
||||
reward = 0.2 * dist_reward # because it does not hit the ball, so multiply 0.2
|
||||
self.total_reward += reward
|
||||
self.goal_achievement = False
|
||||
|
||||
self.refresh_highest_reward()
|
||||
|
||||
@classmethod
|
||||
def relu(cls, x):
|
||||
return np.maximum(0, x)
|
||||
|
||||
# def right_table_contact(self, env):
|
||||
# right_court_contact_obj = ["target_ball", "table_tennis_table_right_side"]
|
||||
# if env.target_ball_pos[0] >= 0 and env.target_ball_pos[2] >= 0.7:
|
||||
# # update right court contact detection
|
||||
# if not self.right_court_contact_detector:
|
||||
# self.right_court_contact_detector = self.contact_detection(env, right_court_contact_obj)
|
||||
# if self.right_court_contact_detector:
|
||||
# self.contact_x_pos = env.target_ball_pos[0]
|
||||
# if self.right_court_contact_detector:
|
||||
# self.total_reward += 1 - norm(0.685, 1).pdf(self.contact_x_pos) # x axis middle of right table
|
||||
# self.goal_achievement = False
|
||||
# else:
|
||||
# self.total_reward += 1
|
||||
# self.goal_achievement = True
|
||||
# # else:
|
||||
# # self.total_reward += 0
|
||||
# # self.goal_achievement = False
|
||||
# self.refresh_highest_reward()
|
||||
|
||||
# def net_contact(self, env):
|
||||
# net_contact_obj = ["target_ball", "table_tennis_net"]
|
||||
# # net_contact_detector = self.contact_detection(env, net_contact_obj)
|
||||
# # ball_x_pos = env.target_ball_pos[0]
|
||||
# # if self.min_ball_x_pos >= ball_x_pos:
|
||||
# # self.min_ball_x_pos = ball_x_pos
|
||||
# # table_left_edge_x_pos = -1.37
|
||||
# # if np.abs(ball_x_pos) <= 0.01: # x threshold of net
|
||||
# # if self.lowest_z >= env.target_ball_pos[2]:
|
||||
# # self.lowest_z = env.target_ball_pos[2]
|
||||
# # # construct a gaussian distribution of z
|
||||
# # z_reward = 4 - norm(0, 0.1).pdf(self.lowest_z - 0.07625) # maximum 4
|
||||
# # self.total_reward += z_reward
|
||||
# # self.total_reward += 2 - np.minimum(1, self.relu(np.abs(self.min_ball_x_pos)))
|
||||
# if not self.net_contact_detector:
|
||||
# self.net_contact_detector = self.contact_detection(env, net_contact_obj)
|
||||
# if self.net_contact_detector:
|
||||
# self.total_reward += 0 # very high cost
|
||||
# self.goal_achievement = False
|
||||
# else:
|
||||
# self.total_reward += 1
|
||||
# self.goal_achievement = True
|
||||
# self.refresh_highest_reward()
|
||||
|
||||
# def landing_on_opponent_court(self, env):
|
||||
# # Very sparse reward
|
||||
# # don't contact the right side court
|
||||
# # right_court_contact_obj = ["target_ball", "table_tennis_table_right_side"]
|
||||
# # right_court_contact_detector = self.contact_detection(env, right_court_contact_obj)
|
||||
# left_court_contact_obj = ["target_ball", "table_tennis_table_left_side"]
|
||||
# # left_court_contact_detector = self.contact_detection(env, left_court_contact_obj)
|
||||
# # record the contact history
|
||||
# # if not self.right_court_contact_detector:
|
||||
# # self.right_court_contact_detector = self.contact_detection(env, right_court_contact_obj)
|
||||
# if not self.table_contact_detector:
|
||||
# self.table_contact_detector = self.contact_detection(env, left_court_contact_obj)
|
||||
#
|
||||
# dist_left_up_corner = self.goal_distance(env.target_ball_pos, env.sim.data.get_site_xpos("left_up_corner"))
|
||||
# dist_middle_up_corner = self.goal_distance(env.target_ball_pos, env.sim.data.get_site_xpos("middle_up_corner"))
|
||||
# dist_left_down_corner = self.goal_distance(env.target_ball_pos, env.sim.data.get_site_xpos("left_down_corner"))
|
||||
# dist_middle_down_corner = self.goal_distance(env.target_ball_pos,
|
||||
# env.sim.data.get_site_xpos("middle_down_corner"))
|
||||
# dist_array = np.array(
|
||||
# [dist_left_up_corner, dist_middle_up_corner, dist_left_down_corner, dist_middle_down_corner])
|
||||
# dist_corner = np.amin(dist_array)
|
||||
# if self.lowest_corner_dist >= dist_corner:
|
||||
# self.lowest_corner_dist = dist_corner
|
||||
#
|
||||
# right_contact_cost = 1
|
||||
# left_contact_reward = 2
|
||||
# dist_left_table_reward = (2 - np.tanh(self.lowest_corner_dist))
|
||||
# # TODO Try multi dimensional gaussian distribution
|
||||
# # contact only the left side court
|
||||
# if self.right_court_contact_detector:
|
||||
# self.total_reward += 0
|
||||
# self.goal_achievement = False
|
||||
# if self.table_contact_detector:
|
||||
# self.total_reward += left_contact_reward
|
||||
# self.goal_achievement = False
|
||||
# else:
|
||||
# self.total_reward += dist_left_table_reward
|
||||
# self.goal_achievement = False
|
||||
# else:
|
||||
# self.total_reward += right_contact_cost
|
||||
# if self.table_contact_detector:
|
||||
# self.total_reward += left_contact_reward
|
||||
# self.goal_achievement = True
|
||||
# else:
|
||||
# self.total_reward += dist_left_table_reward
|
||||
# self.goal_achievement = False
|
||||
# self.refresh_highest_reward()
|
||||
# # if self.left_court_contact_detector and not self.right_court_contact_detector:
|
||||
# # self.total_reward += self.ratio * left_contact_reward
|
||||
# # print("only left court reward return!!!!!!!!!")
|
||||
# # print("contact only left court!!!!!!")
|
||||
# # self.goal_achievement = True
|
||||
# # # no contact with table
|
||||
# # elif not self.right_court_contact_detector and not self.left_court_contact_detector:
|
||||
# # self.total_reward += 0 + self.ratio * dist_left_table_reward
|
||||
# # self.goal_achievement = False
|
||||
# # # contact both side
|
||||
# # elif self.right_court_contact_detector and self.left_court_contact_detector:
|
||||
# # self.total_reward += self.ratio * (left_contact_reward - right_contact_cost) # cost of contact of right court
|
||||
# # self.goal_achievement = False
|
||||
# # # contact only the right side court
|
||||
# # elif self.right_court_contact_detector and not self.left_court_contact_detector:
|
||||
# # self.total_reward += 0 + self.ratio * (
|
||||
# # dist_left_table_reward - right_contact_cost) # cost of contact of right court
|
||||
# # self.goal_achievement = False
|
||||
|
||||
def target_achievement(self, env):
|
||||
target_coordinate = np.array([-0.5, -0.5])
|
||||
# net_contact_obj = ["target_ball", "table_tennis_net"]
|
||||
table_contact_obj = ["target_ball", "table_tennis_table"]
|
||||
floor_contact_obj = ["target_ball", "floor"]
|
||||
|
||||
if 0.78 < env.target_ball_pos[2] < 0.8:
|
||||
dist_target_virtual = np.linalg.norm(env.target_ball_pos[:2] - target_coordinate)
|
||||
if self.dist_target_virtual > dist_target_virtual:
|
||||
self.dist_target_virtual = dist_target_virtual
|
||||
if -0.07 < env.target_ball_pos[0] < 0.07 and env.sim.data.get_joint_qvel('tar:x') < 0:
|
||||
if self.ball_z_pos_lowest > env.target_ball_pos[2]:
|
||||
self.ball_z_pos_lowest = env.target_ball_pos[2].copy()
|
||||
# if not self.net_contact_detector:
|
||||
# self.net_contact_detector = self.contact_detection(env, net_contact_obj)
|
||||
if not self.table_contact_detector:
|
||||
self.table_contact_detector = self.contact_detection(env, table_contact_obj)
|
||||
if not self.floor_contact_detector:
|
||||
self.floor_contact_detector = self.contact_detection(env, floor_contact_obj)
|
||||
if not self.target_flag:
|
||||
# Table Contact Reward.
|
||||
if self.table_contact_detector:
|
||||
self.total_reward += 1
|
||||
# only update when the first contact because of the flag
|
||||
contact_coordinate = env.target_ball_pos[:2].copy()
|
||||
print("contact table ball coordinate: ", env.target_ball_pos)
|
||||
logging.info("contact table ball coordinate: {}".format(env.target_ball_pos))
|
||||
dist_target = np.linalg.norm(contact_coordinate - target_coordinate)
|
||||
self.total_reward += (1 - np.tanh(dist_target)) * 2
|
||||
self.target_flag = True
|
||||
# Net Contact Reward. Precondition: Table Contact exits.
|
||||
if contact_coordinate[0] < 0:
|
||||
print("left table contact")
|
||||
logging.info("~~~~~~~~~~~~~~~left table contact~~~~~~~~~~~~~~~")
|
||||
self.total_reward += 1
|
||||
# TODO Z coordinate reward
|
||||
# self.total_reward += np.maximum(np.tanh(self.ball_z_pos_lowest), 0)
|
||||
self.goal_achievement = True
|
||||
else:
|
||||
print("right table contact")
|
||||
logging.info("~~~~~~~~~~~~~~~right table contact~~~~~~~~~~~~~~~")
|
||||
self.total_reward += 0
|
||||
self.goal_achievement = False
|
||||
# if self.net_contact_detector:
|
||||
# self.total_reward += 0
|
||||
# self.goal_achievement = False
|
||||
# else:
|
||||
# self.total_reward += 1
|
||||
# self.goal_achievement = False
|
||||
# Floor Contact Reward. Precondition: Table Contact exits.
|
||||
elif self.floor_contact_detector:
|
||||
self.total_reward += (1 - np.tanh(self.dist_target_virtual))
|
||||
self.target_flag = True
|
||||
self.goal_achievement = False
|
||||
# No Contact of Floor or Table, flying
|
||||
else:
|
||||
pass
|
||||
# else:
|
||||
# print("Flag is True already")
|
||||
self.refresh_highest_reward()
|
||||
|
||||
def distance_to_target(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def contact_detection(cls, env, goal_contact):
|
||||
for i in range(env.sim.data.ncon):
|
||||
contact = env.sim.data.contact[i]
|
||||
achieved_geom1_name = env.sim.model.geom_id2name(contact.geom1)
|
||||
achieved_geom2_name = env.sim.model.geom_id2name(contact.geom2)
|
||||
if np.all([(achieved_geom1_name in goal_contact), (achieved_geom2_name in goal_contact)]):
|
||||
print("contact of " + achieved_geom1_name + " " + achieved_geom2_name)
|
||||
return True
|
||||
else:
|
||||
return False
|
136
alr_envs/mujoco/gym_table_tennis/utils/rewards/rewards.py
Normal file
136
alr_envs/mujoco/gym_table_tennis/utils/rewards/rewards.py
Normal file
@ -0,0 +1,136 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
# """Soft indicator function evaluating whether a number is within bounds."""
|
||||
#
|
||||
# from __future__ import absolute_import
|
||||
# from __future__ import division
|
||||
# from __future__ import print_function
|
||||
|
||||
# Internal dependencies.
|
||||
import numpy as np
|
||||
|
||||
# The value returned by tolerance() at `margin` distance from `bounds` interval.
|
||||
_DEFAULT_VALUE_AT_MARGIN = 0.1
|
||||
|
||||
|
||||
def _sigmoids(x, value_at_1, sigmoid):
|
||||
"""Returns 1 when `x` == 0, between 0 and 1 otherwise.
|
||||
|
||||
Args:
|
||||
x: A scalar or numpy array.
|
||||
value_at_1: A float between 0 and 1 specifying the output when `x` == 1.
|
||||
sigmoid: String, choice of sigmoid type.
|
||||
|
||||
Returns:
|
||||
A numpy array with values between 0.0 and 1.0.
|
||||
|
||||
Raises:
|
||||
ValueError: If not 0 < `value_at_1` < 1, except for `linear`, `cosine` and
|
||||
`quadratic` sigmoids which allow `value_at_1` == 0.
|
||||
ValueError: If `sigmoid` is of an unknown type.
|
||||
"""
|
||||
if sigmoid in ('cosine', 'linear', 'quadratic'):
|
||||
if not 0 <= value_at_1 < 1:
|
||||
raise ValueError('`value_at_1` must be nonnegative and smaller than 1, '
|
||||
'got {}.'.format(value_at_1))
|
||||
else:
|
||||
if not 0 < value_at_1 < 1:
|
||||
raise ValueError('`value_at_1` must be strictly between 0 and 1, '
|
||||
'got {}.'.format(value_at_1))
|
||||
|
||||
if sigmoid == 'gaussian':
|
||||
scale = np.sqrt(-2 * np.log(value_at_1))
|
||||
return np.exp(-0.5 * (x*scale)**2)
|
||||
|
||||
elif sigmoid == 'hyperbolic':
|
||||
scale = np.arccosh(1/value_at_1)
|
||||
return 1 / np.cosh(x*scale)
|
||||
|
||||
elif sigmoid == 'long_tail':
|
||||
scale = np.sqrt(1/value_at_1 - 1)
|
||||
return 1 / ((x*scale)**2 + 1)
|
||||
|
||||
elif sigmoid == 'cosine':
|
||||
scale = np.arccos(2*value_at_1 - 1) / np.pi
|
||||
scaled_x = x*scale
|
||||
return np.where(abs(scaled_x) < 1, (1 + np.cos(np.pi*scaled_x))/2, 0.0)
|
||||
|
||||
elif sigmoid == 'linear':
|
||||
scale = 1-value_at_1
|
||||
scaled_x = x*scale
|
||||
return np.where(abs(scaled_x) < 1, 1 - scaled_x, 0.0)
|
||||
|
||||
elif sigmoid == 'quadratic':
|
||||
scale = np.sqrt(1-value_at_1)
|
||||
scaled_x = x*scale
|
||||
return np.where(abs(scaled_x) < 1, 1 - scaled_x**2, 0.0)
|
||||
|
||||
elif sigmoid == 'tanh_squared':
|
||||
scale = np.arctanh(np.sqrt(1-value_at_1))
|
||||
return 1 - np.tanh(x*scale)**2
|
||||
|
||||
else:
|
||||
raise ValueError('Unknown sigmoid type {!r}.'.format(sigmoid))
|
||||
|
||||
|
||||
def tolerance(x, bounds=(0.0, 0.0), margin=0.0, sigmoid='gaussian',
|
||||
value_at_margin=_DEFAULT_VALUE_AT_MARGIN):
|
||||
"""Returns 1 when `x` falls inside the bounds, between 0 and 1 otherwise.
|
||||
|
||||
Args:
|
||||
x: A scalar or numpy array.
|
||||
bounds: A tuple of floats specifying inclusive `(lower, upper)` bounds for
|
||||
the target interval. These can be infinite if the interval is unbounded
|
||||
at one or both ends, or they can be equal to one another if the target
|
||||
value is exact.
|
||||
margin: Float. Parameter that controls how steeply the output decreases as
|
||||
`x` moves out-of-bounds.
|
||||
* If `margin == 0` then the output will be 0 for all values of `x`
|
||||
outside of `bounds`.
|
||||
* If `margin > 0` then the output will decrease sigmoidally with
|
||||
increasing distance from the nearest bound.
|
||||
sigmoid: String, choice of sigmoid type. Valid values are: 'gaussian',
|
||||
'linear', 'hyperbolic', 'long_tail', 'cosine', 'tanh_squared'.
|
||||
value_at_margin: A float between 0 and 1 specifying the output value when
|
||||
the distance from `x` to the nearest bound is equal to `margin`. Ignored
|
||||
if `margin == 0`.
|
||||
|
||||
Returns:
|
||||
A float or numpy array with values between 0.0 and 1.0.
|
||||
|
||||
Raises:
|
||||
ValueError: If `bounds[0] > bounds[1]`.
|
||||
ValueError: If `margin` is negative.
|
||||
"""
|
||||
lower, upper = bounds
|
||||
if lower > upper:
|
||||
raise ValueError('Lower bound must be <= upper bound.')
|
||||
if margin < 0:
|
||||
raise ValueError('`margin` must be non-negative.')
|
||||
|
||||
in_bounds = np.logical_and(lower <= x, x <= upper)
|
||||
if margin == 0:
|
||||
value = np.where(in_bounds, 1.0, 0.0)
|
||||
else:
|
||||
d = np.where(x < lower, lower - x, x - upper) / margin
|
||||
value = np.where(in_bounds, 1.0, _sigmoids(d, value_at_margin, sigmoid))
|
||||
|
||||
return float(value) if np.isscalar(x) else value
|
||||
|
||||
|
||||
|
||||
|
||||
|
49
alr_envs/mujoco/gym_table_tennis/utils/util.py
Normal file
49
alr_envs/mujoco/gym_table_tennis/utils/util.py
Normal file
@ -0,0 +1,49 @@
|
||||
import json
|
||||
import yaml
|
||||
import xml.etree.ElementTree as ET
|
||||
from collections import OrderedDict
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
def read_json(fname):
|
||||
fname = Path(fname)
|
||||
with fname.open('rt') as handle:
|
||||
return json.load(handle, object_hook=OrderedDict)
|
||||
|
||||
|
||||
def write_json(content, fname):
|
||||
fname = Path(fname)
|
||||
with fname.open('wt') as handle:
|
||||
json.dump(content, handle, indent=4, sort_keys=False)
|
||||
|
||||
|
||||
def read_yaml(fname):
|
||||
fname = Path(fname)
|
||||
with fname.open('rt') as handle:
|
||||
return yaml.load(handle, Loader=yaml.FullLoader)
|
||||
|
||||
|
||||
def write_yaml(content, fname):
|
||||
fname = Path(fname)
|
||||
with fname.open('wt') as handle:
|
||||
yaml.dump(content, handle)
|
||||
|
||||
|
||||
def config_save(dir_path, config):
|
||||
dir_path = Path(dir_path)
|
||||
config_path_json = dir_path / "config.json"
|
||||
config_path_yaml = dir_path / "config.yml"
|
||||
# .json and .yml file,save 2 version of configuration.
|
||||
write_json(config, config_path_json)
|
||||
write_yaml(config, config_path_yaml)
|
||||
|
||||
|
||||
def change_kp_in_xml(kp_list,
|
||||
model_path="/home/zhou/slow/table_tennis_rl/simulation/gymTableTennis/gym_table_tennis/envs/robotics/assets/table_tennis/right_arm_actuator.xml"):
|
||||
tree = ET.parse(model_path)
|
||||
root = tree.getroot()
|
||||
# for actuator in root.find("actuator"):
|
||||
for position, kp in zip(root.iter('position'), kp_list):
|
||||
position.set("kp", str(kp))
|
||||
tree.write(model_path)
|
||||
|
@ -4,8 +4,8 @@ import gym
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# env = gym.make('alr_envs:ALRReacher-v0')
|
||||
env = gym.make('alr_envs:SimpleReacher-v0')
|
||||
env = gym.make('alr_envs:ALRReacher-v0')
|
||||
# env = gym.make('alr_envs:SimpleReacher-v0')
|
||||
# env = gym.make('alr_envs:ALRReacher7-v0')
|
||||
state = env.reset()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user