removed action scaling

This commit is contained in:
ottofabian 2020-09-08 12:43:14 +02:00
parent df4361564a
commit cbdd5d1854

View File

@ -31,7 +31,7 @@ class SimpleReacherEnv(gym.Env):
self._angle_velocity = None self._angle_velocity = None
self.max_torque = 1 # 10 self.max_torque = 1 # 10
self.steps_before_reward = 50 self.steps_before_reward = 100
action_bound = np.ones((self.n_links,)) action_bound = np.ones((self.n_links,))
state_bound = np.hstack([ state_bound = np.hstack([
@ -50,9 +50,10 @@ class SimpleReacherEnv(gym.Env):
self._steps = 0 self._steps = 0
self.seed() self.seed()
def step(self, action): def step(self, action: np.ndarray):
action = self._scale_action(action) # action = self._add_action_noise(action)
action = np.clip(action, -self.max_torque, self.max_torque)
self._angle_velocity = self._angle_velocity + self.dt * action self._angle_velocity = self._angle_velocity + self.dt * action
self._joint_angle = angle_normalize(self._joint_angle + self.dt * self._angle_velocity) self._joint_angle = angle_normalize(self._joint_angle + self.dt * self._angle_velocity)
@ -66,22 +67,16 @@ class SimpleReacherEnv(gym.Env):
return self._get_obs().copy(), reward, done, info return self._get_obs().copy(), reward, done, info
def _scale_action(self, action): def _add_action_noise(self, action: np.ndarray):
""" """
scale actions back in order to provide normalized actions \in [0,1] add unobserved Gaussian Noise N(0,0.5) to the actions
Args: Args:
action: action to scale action:
Returns: action according to self.max_torque Returns: actions with noise
""" """
return self.np_random.normal(0, 0.1, *action.shape) + action
ub = self.max_torque
lb = -self.max_torque
action = lb + (action + 1.) * 0.5 * (ub - lb)
return np.clip(action, lb, ub)
def _get_obs(self): def _get_obs(self):
theta = self._joint_angle theta = self._joint_angle
@ -103,7 +98,7 @@ class SimpleReacherEnv(gym.Env):
x = self.link_lengths * np.vstack([np.cos(angles), np.sin(angles)]) x = self.link_lengths * np.vstack([np.cos(angles), np.sin(angles)])
self._joints[1:] = self._joints[0] + np.cumsum(x.T, axis=0) self._joints[1:] = self._joints[0] + np.cumsum(x.T, axis=0)
def _get_reward(self, action): def _get_reward(self, action: np.ndarray):
diff = self.end_effector - self._goal_pos diff = self.end_effector - self._goal_pos
reward_dist = 0 reward_dist = 0
@ -152,6 +147,7 @@ class SimpleReacherEnv(gym.Env):
plt.figure(self.fig.number) plt.figure(self.fig.number)
plt.cla() plt.cla()
plt.title(f"Iteration: {self._steps}, distance: {self.end_effector - self._goal_pos}")
# Arm # Arm
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k') plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')