biac reward function update

This commit is contained in:
Maximilian Huettenrauch 2021-02-18 11:33:55 +01:00
parent 7ed22df778
commit dd18a04df6

View File

@ -36,44 +36,52 @@ class BallInACupReward(alr_reward_fct.AlrReward):
self.dists_final = [] self.dists_final = []
self.costs = [] self.costs = []
self.context = context self.context = context
self.ball_in_cup = False
self.dist_ctxt = 5
def compute_reward(self, action, sim, step): def compute_reward(self, action, sim, step):
action_cost = np.sum(np.square(action))
stop_sim = False
success = False
self.ball_id = sim.model._body_name2id["ball"] self.ball_id = sim.model._body_name2id["ball"]
self.ball_collision_id = sim.model._geom_name2id["ball_geom"] self.ball_collision_id = sim.model._geom_name2id["ball_geom"]
self.goal_id = sim.model._site_name2id["cup_goal"] self.goal_id = sim.model._site_name2id["cup_goal"]
self.goal_final_id = sim.model._site_name2id["cup_goal_final"] self.goal_final_id = sim.model._site_name2id["cup_goal_final"]
self.collision_ids = [sim.model._geom_name2id[name] for name in self.collision_objects] self.collision_ids = [sim.model._geom_name2id[name] for name in self.collision_objects]
ball_in_cup = self.check_ball_in_cup(sim, self.ball_collision_id) if self.check_collision(sim):
reward = - 1e-4 * action_cost - 1000
stop_sim = True
return reward, success, stop_sim
# Compute the current distance from the ball to the inner part of the cup # Compute the current distance from the ball to the inner part of the cup
goal_pos = sim.data.site_xpos[self.goal_id] goal_pos = sim.data.site_xpos[self.goal_id]
ball_pos = sim.data.body_xpos[self.ball_id] ball_pos = sim.data.body_xpos[self.ball_id]
goal_final_pos = sim.data.site_xpos[self.goal_final_id] goal_final_pos = sim.data.site_xpos[self.goal_final_id]
self.dists.append(np.linalg.norm(goal_pos - ball_pos)) self.dists.append(np.linalg.norm(goal_pos - ball_pos))
self.dists_ctxt.append(np.linalg.norm(ball_pos - self.context))
self.dists_final.append(np.linalg.norm(goal_final_pos - ball_pos)) self.dists_final.append(np.linalg.norm(goal_final_pos - ball_pos))
self.dists_ctxt.append(np.linalg.norm(ball_pos - self.context))
self.ball_traj[step, :] = ball_pos self.ball_traj[step, :] = ball_pos
action_cost = np.sum(np.square(action)) # Determine the first time when ball is in cup
if not self.ball_in_cup:
ball_in_cup = self.check_ball_in_cup(sim, self.ball_collision_id)
self.ball_in_cup = ball_in_cup
if ball_in_cup:
dist_to_ctxt = np.linalg.norm(ball_pos - self.context)
self.dist_ctxt = dist_to_ctxt
stop_sim = False if step == self.sim_time - 1:
success = False
if self.check_collision(sim):
reward = - 1e-4 * action_cost - 1000
stop_sim = True
return reward, success, stop_sim
if ball_in_cup or step == self.sim_time - 1:
min_dist = np.min(self.dists) min_dist = np.min(self.dists)
dist_final = self.dists_final[-1] dist_final = self.dists_final[-1]
dist_ctxt = self.dists_ctxt[-1] # dist_ctxt = self.dists_ctxt[-1]
# cost = self._get_stage_wise_cost(ball_in_cup, min_dist, dist_final, dist_ctxt) # cost = self._get_stage_wise_cost(ball_in_cup, min_dist, dist_final, dist_ctxt)
cost = 2 * (0.5 * min_dist + 0.5 * dist_final + 0.1 * dist_ctxt) cost = 2 * (0.5 * min_dist + 0.5 * dist_final + 0.1 * self.dist_ctxt)
reward = np.exp(-1 * cost) - 1e-4 * action_cost reward = np.exp(-1 * cost) - 1e-4 * action_cost
success = dist_final < 0.05 and dist_ctxt < 0.05 success = dist_final < 0.05 and self.dist_ctxt < 0.05
else: else:
reward = - 1e-4 * action_cost reward = - 1e-4 * action_cost
success = False success = False