biac reward function update
This commit is contained in:
parent
7ed22df778
commit
dd18a04df6
@ -36,44 +36,52 @@ class BallInACupReward(alr_reward_fct.AlrReward):
|
|||||||
self.dists_final = []
|
self.dists_final = []
|
||||||
self.costs = []
|
self.costs = []
|
||||||
self.context = context
|
self.context = context
|
||||||
|
self.ball_in_cup = False
|
||||||
|
self.dist_ctxt = 5
|
||||||
|
|
||||||
def compute_reward(self, action, sim, step):
|
def compute_reward(self, action, sim, step):
|
||||||
|
action_cost = np.sum(np.square(action))
|
||||||
|
|
||||||
|
stop_sim = False
|
||||||
|
success = False
|
||||||
|
|
||||||
self.ball_id = sim.model._body_name2id["ball"]
|
self.ball_id = sim.model._body_name2id["ball"]
|
||||||
self.ball_collision_id = sim.model._geom_name2id["ball_geom"]
|
self.ball_collision_id = sim.model._geom_name2id["ball_geom"]
|
||||||
self.goal_id = sim.model._site_name2id["cup_goal"]
|
self.goal_id = sim.model._site_name2id["cup_goal"]
|
||||||
self.goal_final_id = sim.model._site_name2id["cup_goal_final"]
|
self.goal_final_id = sim.model._site_name2id["cup_goal_final"]
|
||||||
self.collision_ids = [sim.model._geom_name2id[name] for name in self.collision_objects]
|
self.collision_ids = [sim.model._geom_name2id[name] for name in self.collision_objects]
|
||||||
|
|
||||||
ball_in_cup = self.check_ball_in_cup(sim, self.ball_collision_id)
|
if self.check_collision(sim):
|
||||||
|
reward = - 1e-4 * action_cost - 1000
|
||||||
|
stop_sim = True
|
||||||
|
return reward, success, stop_sim
|
||||||
|
|
||||||
# Compute the current distance from the ball to the inner part of the cup
|
# Compute the current distance from the ball to the inner part of the cup
|
||||||
goal_pos = sim.data.site_xpos[self.goal_id]
|
goal_pos = sim.data.site_xpos[self.goal_id]
|
||||||
ball_pos = sim.data.body_xpos[self.ball_id]
|
ball_pos = sim.data.body_xpos[self.ball_id]
|
||||||
goal_final_pos = sim.data.site_xpos[self.goal_final_id]
|
goal_final_pos = sim.data.site_xpos[self.goal_final_id]
|
||||||
self.dists.append(np.linalg.norm(goal_pos - ball_pos))
|
self.dists.append(np.linalg.norm(goal_pos - ball_pos))
|
||||||
self.dists_ctxt.append(np.linalg.norm(ball_pos - self.context))
|
|
||||||
self.dists_final.append(np.linalg.norm(goal_final_pos - ball_pos))
|
self.dists_final.append(np.linalg.norm(goal_final_pos - ball_pos))
|
||||||
|
self.dists_ctxt.append(np.linalg.norm(ball_pos - self.context))
|
||||||
self.ball_traj[step, :] = ball_pos
|
self.ball_traj[step, :] = ball_pos
|
||||||
|
|
||||||
action_cost = np.sum(np.square(action))
|
# Determine the first time when ball is in cup
|
||||||
|
if not self.ball_in_cup:
|
||||||
|
ball_in_cup = self.check_ball_in_cup(sim, self.ball_collision_id)
|
||||||
|
self.ball_in_cup = ball_in_cup
|
||||||
|
if ball_in_cup:
|
||||||
|
dist_to_ctxt = np.linalg.norm(ball_pos - self.context)
|
||||||
|
self.dist_ctxt = dist_to_ctxt
|
||||||
|
|
||||||
stop_sim = False
|
if step == self.sim_time - 1:
|
||||||
success = False
|
|
||||||
|
|
||||||
if self.check_collision(sim):
|
|
||||||
reward = - 1e-4 * action_cost - 1000
|
|
||||||
stop_sim = True
|
|
||||||
return reward, success, stop_sim
|
|
||||||
|
|
||||||
if ball_in_cup or step == self.sim_time - 1:
|
|
||||||
min_dist = np.min(self.dists)
|
min_dist = np.min(self.dists)
|
||||||
dist_final = self.dists_final[-1]
|
dist_final = self.dists_final[-1]
|
||||||
dist_ctxt = self.dists_ctxt[-1]
|
# dist_ctxt = self.dists_ctxt[-1]
|
||||||
|
|
||||||
# cost = self._get_stage_wise_cost(ball_in_cup, min_dist, dist_final, dist_ctxt)
|
# cost = self._get_stage_wise_cost(ball_in_cup, min_dist, dist_final, dist_ctxt)
|
||||||
cost = 2 * (0.5 * min_dist + 0.5 * dist_final + 0.1 * dist_ctxt)
|
cost = 2 * (0.5 * min_dist + 0.5 * dist_final + 0.1 * self.dist_ctxt)
|
||||||
reward = np.exp(-1 * cost) - 1e-4 * action_cost
|
reward = np.exp(-1 * cost) - 1e-4 * action_cost
|
||||||
success = dist_final < 0.05 and dist_ctxt < 0.05
|
success = dist_final < 0.05 and self.dist_ctxt < 0.05
|
||||||
else:
|
else:
|
||||||
reward = - 1e-4 * action_cost
|
reward = - 1e-4 * action_cost
|
||||||
success = False
|
success = False
|
||||||
|
Loading…
Reference in New Issue
Block a user