added asyc DMP example

This commit is contained in:
ottofabian 2021-03-26 16:37:38 +01:00
parent 0097fe4f99
commit dee2fad263
2 changed files with 46 additions and 5 deletions

View File

@ -1,4 +1,5 @@
from abc import ABC, abstractmethod
from collections import defaultdict
import gym
import numpy as np
@ -49,24 +50,26 @@ class MPWrapper(gym.Wrapper, ABC):
# self._velocity = velocity
rewards = 0
infos = []
# infos = defaultdict(list)
# TODO: @Max Why do we need this configure, states should be part of the model
# self.env.configure(context)
obs = self.env.reset()
info = {}
for t, pos_vel in enumerate(zip(trajectory, velocity)):
ac = self.policy.get_action(pos_vel[0], pos_vel[1])
obs, rew, done, info = self.env.step(ac)
rewards += rew
infos.append(info)
# TODO return all dicts?
# [infos[k].append(v) for k, v in info.items()]
if self.render_mode:
self.env.render(mode=self.render_mode, **self.render_kwargs)
if done:
break
done = True
return obs, rewards, done, infos
return obs, rewards, done, info
def render(self, mode='human', **kwargs):
"""Only set render options here, such that they can be used during the rollout.

View File

@ -1,4 +1,7 @@
from collections import defaultdict
import gym
import numpy as np
def example_mujoco():
@ -36,7 +39,7 @@ def example_dmp():
# render full DMP trajectory
# render can only be called once in the beginning as well. That would render every trajectory
# Calling it after every trajectory allows to modify the mode. mode=None, disables rendering.
env.render(mode="partial")
env.render(mode="human")
if done:
print(rewards)
@ -44,5 +47,40 @@ def example_dmp():
obs = env.reset()
def example_async(n_cpu=4, seed=int('533D', 16)):
def make_env(env_id, seed, rank):
env = gym.make(env_id)
env.seed(seed + rank)
return lambda: env
def sample(env: gym.vector.VectorEnv, n_samples=100):
# for plotting
rewards = np.zeros(n_cpu)
# this would generate more samples than requested if n_samples % num_envs != 0
repeat = int(np.ceil(n_samples / env.num_envs))
vals = defaultdict(list)
for i in range(repeat):
obs, reward, done, info = envs.step(envs.action_space.sample())
vals['obs'].append(obs)
vals['reward'].append(reward)
vals['done'].append(done)
vals['info'].append(info)
rewards += reward
if np.any(done):
print(rewards[done])
rewards[done] = 0
# do not return values above threshold
return (*map(lambda v: np.stack(v)[:n_samples], vals.values()),)
envs = gym.vector.AsyncVectorEnv([make_env("alr_envs:HoleReacherDMP-v0", seed, i) for i in range(n_cpu)])
obs = envs.reset()
print(sample(envs, 16))
if __name__ == '__main__':
example_dmp()
# example_mujoco()
# example_dmp()
example_async()