removed old holereacher env
This commit is contained in:
parent
2543bcd7ec
commit
df87885c81
@ -335,7 +335,7 @@ for _v in _versions:
|
||||
"num_basis": 5,
|
||||
"duration": 2,
|
||||
"learn_goal": True,
|
||||
"alpha_phase": 2,
|
||||
"alpha_phase": 2.5,
|
||||
"bandwidth_factor": 2,
|
||||
"policy_type": "velocity",
|
||||
"weights_scale": 50,
|
||||
@ -357,7 +357,7 @@ for _v in _versions:
|
||||
"num_basis": 5,
|
||||
"duration": 2,
|
||||
"policy_type": "velocity",
|
||||
"weights_scale": 0.2,
|
||||
"weights_scale": 0.1,
|
||||
"zero_start": True
|
||||
}
|
||||
}
|
||||
|
@ -1,3 +1,3 @@
|
||||
from .hole_reacher.hole_reacher import HoleReacherEnv, HoleReacherEnvOld
|
||||
from .hole_reacher.hole_reacher import HoleReacherEnv
|
||||
from .simple_reacher.simple_reacher import SimpleReacherEnv
|
||||
from .viapoint_reacher.viapoint_reacher import ViaPointReacherEnv
|
||||
|
@ -42,6 +42,9 @@ class HoleReacherEnv(BaseReacherDirectEnv):
|
||||
if rew_fct == "simple":
|
||||
from alr_envs.alr.classic_control.hole_reacher.hr_simple_reward import HolereacherReward
|
||||
self.reward_function = HolereacherReward(allow_self_collision, allow_wall_collision, collision_penalty)
|
||||
elif rew_fct == "vel_acc":
|
||||
from alr_envs.alr.classic_control.hole_reacher.hr_dist_vel_acc_reward import HolereacherReward
|
||||
self.reward_function = HolereacherReward(allow_self_collision, allow_wall_collision, collision_penalty)
|
||||
else:
|
||||
raise ValueError("Unknown reward function {}".format(rew_fct))
|
||||
|
||||
|
@ -1,315 +0,0 @@
|
||||
from typing import Union
|
||||
|
||||
import gym
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from gym.utils import seeding
|
||||
from matplotlib import patches
|
||||
|
||||
from alr_envs.alr.classic_control.base_reacher.base_reacher_direct import BaseReacherDirectEnv
|
||||
from alr_envs.alr.classic_control.utils import check_self_collision
|
||||
|
||||
|
||||
class HoleReacherEnvOld(gym.Env):
|
||||
|
||||
def __init__(self, n_links: int, hole_x: Union[None, float] = None, hole_depth: Union[None, float] = None,
|
||||
hole_width: float = 1., random_start: bool = False, allow_self_collision: bool = False,
|
||||
allow_wall_collision: bool = False, collision_penalty: float = 1000):
|
||||
|
||||
self.n_links = n_links
|
||||
self.link_lengths = np.ones((n_links, 1))
|
||||
|
||||
self.random_start = random_start
|
||||
|
||||
# provided initial parameters
|
||||
self.initial_x = hole_x # x-position of center of hole
|
||||
self.initial_width = hole_width # width of hole
|
||||
self.initial_depth = hole_depth # depth of hole
|
||||
|
||||
# temp container for current env state
|
||||
self._tmp_x = None
|
||||
self._tmp_width = None
|
||||
self._tmp_depth = None
|
||||
self._goal = None # x-y coordinates for reaching the center at the bottom of the hole
|
||||
|
||||
# collision
|
||||
self.allow_self_collision = allow_self_collision
|
||||
self.allow_wall_collision = allow_wall_collision
|
||||
self.collision_penalty = collision_penalty
|
||||
|
||||
# state
|
||||
self._joints = None
|
||||
self._joint_angles = None
|
||||
self._angle_velocity = None
|
||||
self._start_pos = np.hstack([[np.pi / 2], np.zeros(self.n_links - 1)])
|
||||
self._start_vel = np.zeros(self.n_links)
|
||||
|
||||
self._dt = 0.01
|
||||
|
||||
action_bound = np.pi * np.ones((self.n_links,))
|
||||
state_bound = np.hstack([
|
||||
[np.pi] * self.n_links, # cos
|
||||
[np.pi] * self.n_links, # sin
|
||||
[np.inf] * self.n_links, # velocity
|
||||
[np.inf], # hole width
|
||||
# [np.inf], # hole depth
|
||||
[np.inf] * 2, # x-y coordinates of target distance
|
||||
[np.inf] # env steps, because reward start after n steps TODO: Maybe
|
||||
])
|
||||
self.action_space = gym.spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
|
||||
self.observation_space = gym.spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
|
||||
|
||||
# containers for plotting
|
||||
self.metadata = {'render.modes': ["human", "partial"]}
|
||||
self.fig = None
|
||||
|
||||
self._steps = 0
|
||||
self.seed()
|
||||
|
||||
@property
|
||||
def dt(self) -> Union[float, int]:
|
||||
return self._dt
|
||||
|
||||
# @property
|
||||
# def start_pos(self):
|
||||
# return self._start_pos
|
||||
|
||||
@property
|
||||
def current_pos(self):
|
||||
return self._joint_angles.copy()
|
||||
|
||||
@property
|
||||
def current_vel(self):
|
||||
return self._angle_velocity.copy()
|
||||
|
||||
def step(self, action: np.ndarray):
|
||||
"""
|
||||
A single step with an action in joint velocity space
|
||||
"""
|
||||
|
||||
acc = (action - self._angle_velocity) / self.dt
|
||||
self._angle_velocity = action
|
||||
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity # + 0.001 * np.random.randn(5)
|
||||
self._update_joints()
|
||||
|
||||
reward, info = self._get_reward(acc)
|
||||
|
||||
info.update({"is_collided": self._is_collided})
|
||||
self.end_effector_traj.append(np.copy(self.end_effector))
|
||||
|
||||
self._steps += 1
|
||||
done = self._is_collided
|
||||
|
||||
return self._get_obs().copy(), reward, done, info
|
||||
|
||||
def reset(self):
|
||||
if self.random_start:
|
||||
# Maybe change more than first seed
|
||||
first_joint = self.np_random.uniform(np.pi / 4, 3 * np.pi / 4)
|
||||
self._joint_angles = np.hstack([[first_joint], np.zeros(self.n_links - 1)])
|
||||
self._start_pos = self._joint_angles.copy()
|
||||
else:
|
||||
self._joint_angles = self._start_pos
|
||||
|
||||
self._generate_hole()
|
||||
self._set_patches()
|
||||
|
||||
self._angle_velocity = self._start_vel
|
||||
self._joints = np.zeros((self.n_links + 1, 2))
|
||||
self._update_joints()
|
||||
self._steps = 0
|
||||
self.end_effector_traj = []
|
||||
|
||||
return self._get_obs().copy()
|
||||
|
||||
def _generate_hole(self):
|
||||
if self.initial_width is None:
|
||||
width = self.np_random.uniform(0.15, 0.5)
|
||||
else:
|
||||
width = np.copy(self.initial_width)
|
||||
if self.initial_x is None:
|
||||
# sample whole on left or right side
|
||||
direction = self.np_random.choice([-1, 1])
|
||||
# Hole center needs to be half the width away from the arm to give a valid setting.
|
||||
x = direction * self.np_random.uniform(width / 2, 3.5)
|
||||
else:
|
||||
x = np.copy(self.initial_x)
|
||||
if self.initial_depth is None:
|
||||
# TODO we do not want this right now.
|
||||
depth = self.np_random.uniform(1, 1)
|
||||
else:
|
||||
depth = np.copy(self.initial_depth)
|
||||
|
||||
self._tmp_width = width
|
||||
self._tmp_x = x
|
||||
self._tmp_depth = depth
|
||||
self._goal = np.hstack([self._tmp_x, -self._tmp_depth])
|
||||
|
||||
def _update_joints(self):
|
||||
"""
|
||||
update _joints to get new end effector position. The other links are only required for rendering.
|
||||
Returns:
|
||||
|
||||
"""
|
||||
line_points_in_taskspace = self._get_forward_kinematics(num_points_per_link=20)
|
||||
|
||||
self._joints[1:, 0] = self._joints[0, 0] + line_points_in_taskspace[:, -1, 0]
|
||||
self._joints[1:, 1] = self._joints[0, 1] + line_points_in_taskspace[:, -1, 1]
|
||||
|
||||
self_collision = False
|
||||
wall_collision = False
|
||||
|
||||
if not self.allow_self_collision:
|
||||
self_collision = check_self_collision(line_points_in_taskspace)
|
||||
if np.any(np.abs(self._joint_angles) > np.pi) and not self.allow_self_collision:
|
||||
self_collision = True
|
||||
|
||||
if not self.allow_wall_collision:
|
||||
wall_collision = self._check_wall_collision(line_points_in_taskspace)
|
||||
|
||||
self._is_collided = self_collision or wall_collision
|
||||
|
||||
def _get_reward(self, acc: np.ndarray):
|
||||
reward = 0
|
||||
# success = False
|
||||
|
||||
if self._steps == 199 or self._is_collided:
|
||||
# return reward only in last time step
|
||||
# Episode also terminates when colliding, hence return reward
|
||||
dist = np.linalg.norm(self.end_effector - self._goal)
|
||||
# success = dist < 0.005 and not self._is_collided
|
||||
reward = - dist ** 2 - self.collision_penalty * self._is_collided
|
||||
|
||||
reward -= 5e-8 * np.sum(acc ** 2)
|
||||
# info = {"is_success": success}
|
||||
|
||||
return reward, {} # info
|
||||
|
||||
def _get_obs(self):
|
||||
theta = self._joint_angles
|
||||
return np.hstack([
|
||||
np.cos(theta),
|
||||
np.sin(theta),
|
||||
self._angle_velocity,
|
||||
self._tmp_width,
|
||||
# self._tmp_hole_depth,
|
||||
self.end_effector - self._goal,
|
||||
self._steps
|
||||
])
|
||||
|
||||
def _get_forward_kinematics(self, num_points_per_link=1):
|
||||
theta = self._joint_angles[:, None]
|
||||
|
||||
intermediate_points = np.linspace(0, 1, num_points_per_link) if num_points_per_link > 1 else 1
|
||||
accumulated_theta = np.cumsum(theta, axis=0)
|
||||
end_effector = np.zeros(shape=(self.n_links, num_points_per_link, 2))
|
||||
|
||||
x = np.cos(accumulated_theta) * self.link_lengths * intermediate_points
|
||||
y = np.sin(accumulated_theta) * self.link_lengths * intermediate_points
|
||||
|
||||
end_effector[0, :, 0] = x[0, :]
|
||||
end_effector[0, :, 1] = y[0, :]
|
||||
|
||||
for i in range(1, self.n_links):
|
||||
end_effector[i, :, 0] = x[i, :] + end_effector[i - 1, -1, 0]
|
||||
end_effector[i, :, 1] = y[i, :] + end_effector[i - 1, -1, 1]
|
||||
|
||||
return np.squeeze(end_effector + self._joints[0, :])
|
||||
|
||||
def _check_wall_collision(self, line_points):
|
||||
# all points that are before the hole in x
|
||||
r, c = np.where(line_points[:, :, 0] < (self._tmp_x - self._tmp_width / 2))
|
||||
|
||||
# check if any of those points are below surface
|
||||
nr_line_points_below_surface_before_hole = np.sum(line_points[r, c, 1] < 0)
|
||||
|
||||
if nr_line_points_below_surface_before_hole > 0:
|
||||
return True
|
||||
|
||||
# all points that are after the hole in x
|
||||
r, c = np.where(line_points[:, :, 0] > (self._tmp_x + self._tmp_width / 2))
|
||||
|
||||
# check if any of those points are below surface
|
||||
nr_line_points_below_surface_after_hole = np.sum(line_points[r, c, 1] < 0)
|
||||
|
||||
if nr_line_points_below_surface_after_hole > 0:
|
||||
return True
|
||||
|
||||
# all points that are above the hole
|
||||
r, c = np.where((line_points[:, :, 0] > (self._tmp_x - self._tmp_width / 2)) & (
|
||||
line_points[:, :, 0] < (self._tmp_x + self._tmp_width / 2)))
|
||||
|
||||
# check if any of those points are below surface
|
||||
nr_line_points_below_surface_in_hole = np.sum(line_points[r, c, 1] < -self._tmp_depth)
|
||||
|
||||
if nr_line_points_below_surface_in_hole > 0:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def render(self, mode='human'):
|
||||
if self.fig is None:
|
||||
# Create base figure once on the beginning. Afterwards only update
|
||||
plt.ion()
|
||||
self.fig = plt.figure()
|
||||
ax = self.fig.add_subplot(1, 1, 1)
|
||||
|
||||
# limits
|
||||
lim = np.sum(self.link_lengths) + 0.5
|
||||
ax.set_xlim([-lim, lim])
|
||||
ax.set_ylim([-1.1, lim])
|
||||
|
||||
self.line, = ax.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
||||
self._set_patches()
|
||||
self.fig.show()
|
||||
|
||||
self.fig.gca().set_title(
|
||||
f"Iteration: {self._steps}, distance: {np.linalg.norm(self.end_effector - self._goal) ** 2}")
|
||||
|
||||
if mode == "human":
|
||||
|
||||
# arm
|
||||
self.line.set_data(self._joints[:, 0], self._joints[:, 1])
|
||||
|
||||
self.fig.canvas.draw()
|
||||
self.fig.canvas.flush_events()
|
||||
|
||||
elif mode == "partial":
|
||||
if self._steps % 20 == 0 or self._steps in [1, 199] or self._is_collided:
|
||||
# Arm
|
||||
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k',
|
||||
alpha=self._steps / 200)
|
||||
|
||||
def _set_patches(self):
|
||||
if self.fig is not None:
|
||||
self.fig.gca().patches = []
|
||||
left_block = patches.Rectangle((-self.n_links, -self._tmp_depth),
|
||||
self.n_links + self._tmp_x - self._tmp_width / 2,
|
||||
self._tmp_depth,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
right_block = patches.Rectangle((self._tmp_x + self._tmp_width / 2, -self._tmp_depth),
|
||||
self.n_links - self._tmp_x + self._tmp_width / 2,
|
||||
self._tmp_depth,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
hole_floor = patches.Rectangle((self._tmp_x - self._tmp_width / 2, -self._tmp_depth),
|
||||
self._tmp_width,
|
||||
1 - self._tmp_depth,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
|
||||
# Add the patch to the Axes
|
||||
self.fig.gca().add_patch(left_block)
|
||||
self.fig.gca().add_patch(right_block)
|
||||
self.fig.gca().add_patch(hole_floor)
|
||||
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
@property
|
||||
def end_effector(self):
|
||||
return self._joints[self.n_links].T
|
||||
|
||||
def close(self):
|
||||
super().close()
|
||||
if self.fig is not None:
|
||||
plt.close(self.fig)
|
@ -11,10 +11,11 @@ class HolereacherReward:
|
||||
self.collision_penalty = collision_penalty
|
||||
self._is_collided = False
|
||||
|
||||
self.reward_factors = np.array((-1, -1e-4, -1e-6, -collision_penalty, -1))
|
||||
self.reward_factors = np.array((-1, -1e-4, -1e-6, -collision_penalty, 0))
|
||||
|
||||
def reset(self):
|
||||
self._is_collided = False
|
||||
self.collision_dist = 0
|
||||
|
||||
def get_reward(self, env):
|
||||
dist_cost = 0
|
||||
@ -25,22 +26,25 @@ class HolereacherReward:
|
||||
self_collision = False
|
||||
wall_collision = False
|
||||
|
||||
if not self.allow_self_collision:
|
||||
self_collision = env._check_self_collision()
|
||||
if not self._is_collided:
|
||||
if not self.allow_self_collision:
|
||||
self_collision = env._check_self_collision()
|
||||
|
||||
if not self.allow_wall_collision:
|
||||
wall_collision = env.check_wall_collision()
|
||||
if not self.allow_wall_collision:
|
||||
wall_collision = env.check_wall_collision()
|
||||
|
||||
self._is_collided = self_collision or wall_collision
|
||||
self._is_collided = self_collision or wall_collision
|
||||
|
||||
if env._steps == 199 or self._is_collided:
|
||||
self.collision_dist = np.linalg.norm(env.end_effector - env._goal)
|
||||
|
||||
if env._steps == 199: # or self._is_collided:
|
||||
# return reward only in last time step
|
||||
# Episode also terminates when colliding, hence return reward
|
||||
dist = np.linalg.norm(env.end_effector - env._goal)
|
||||
|
||||
success = dist < 0.005 and not self._is_collided
|
||||
dist_cost = int(not self._is_collided) * dist ** 2
|
||||
collision_cost = self._is_collided * dist ** 2
|
||||
dist_cost = dist ** 2
|
||||
collision_cost = self._is_collided * self.collision_dist ** 2
|
||||
time_cost = 199 - env._steps
|
||||
|
||||
info = {"is_success": success,
|
||||
|
Loading…
Reference in New Issue
Block a user