Merge pull request #6 from ALRhub/contextual_dmp_wrapper
Contextual dmp wrapper + environments
This commit is contained in:
commit
e0e4d6d41c
@ -1,7 +1,8 @@
|
||||
from gym.envs.registration import register
|
||||
|
||||
from alr_envs.stochastic_search.functions.f_rosenbrock import Rosenbrock
|
||||
# from alr_envs.utils.wrapper.dmp_wrapper import DmpWrapper
|
||||
|
||||
# from alr_envs.utils.mps.dmp_wrapper import DmpWrapper
|
||||
|
||||
# Mujoco
|
||||
|
||||
@ -71,6 +72,17 @@ register(
|
||||
}
|
||||
)
|
||||
|
||||
## Balancing Reacher
|
||||
|
||||
register(
|
||||
id='Balancing-v0',
|
||||
entry_point='alr_envs.mujoco:BalancingEnv',
|
||||
max_episode_steps=200,
|
||||
kwargs={
|
||||
"n_links": 5,
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='ALRBallInACupSimple-v0',
|
||||
entry_point='alr_envs.mujoco:ALRBallInACupEnv',
|
||||
@ -101,15 +113,7 @@ register(
|
||||
|
||||
# Classic control
|
||||
|
||||
register(
|
||||
id='Balancing-v0',
|
||||
entry_point='alr_envs.mujoco:BalancingEnv',
|
||||
max_episode_steps=200,
|
||||
kwargs={
|
||||
"n_links": 5,
|
||||
}
|
||||
)
|
||||
|
||||
## Simple Reacher
|
||||
register(
|
||||
id='SimpleReacher-v0',
|
||||
entry_point='alr_envs.classic_control:SimpleReacherEnv',
|
||||
@ -119,6 +123,16 @@ register(
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='SimpleReacher-v1',
|
||||
entry_point='alr_envs.classic_control:SimpleReacherEnv',
|
||||
max_episode_steps=200,
|
||||
kwargs={
|
||||
"n_links": 2,
|
||||
"random_start": False
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='LongSimpleReacher-v0',
|
||||
entry_point='alr_envs.classic_control:SimpleReacherEnv',
|
||||
@ -128,6 +142,18 @@ register(
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='LongSimpleReacher-v1',
|
||||
entry_point='alr_envs.classic_control:SimpleReacherEnv',
|
||||
max_episode_steps=200,
|
||||
kwargs={
|
||||
"n_links": 5,
|
||||
"random_start": False
|
||||
}
|
||||
)
|
||||
|
||||
## Viapoint Reacher
|
||||
|
||||
register(
|
||||
id='ViaPointReacher-v0',
|
||||
entry_point='alr_envs.classic_control.viapoint_reacher:ViaPointReacher',
|
||||
@ -139,14 +165,47 @@ register(
|
||||
}
|
||||
)
|
||||
|
||||
## Hole Reacher
|
||||
register(
|
||||
id='HoleReacher-v0',
|
||||
entry_point='alr_envs.classic_control.hole_reacher:HoleReacher',
|
||||
entry_point='alr_envs.classic_control.hole_reacher:HoleReacherEnv',
|
||||
max_episode_steps=200,
|
||||
kwargs={
|
||||
"n_links": 5,
|
||||
"allow_self_collision": False,
|
||||
"allow_wall_collision": False,
|
||||
"hole_width": None,
|
||||
"hole_depth": 1,
|
||||
"hole_x": None,
|
||||
"collision_penalty": 100,
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='HoleReacher-v1',
|
||||
entry_point='alr_envs.classic_control.hole_reacher:HoleReacherEnv',
|
||||
max_episode_steps=200,
|
||||
kwargs={
|
||||
"n_links": 5,
|
||||
"random_start": False,
|
||||
"allow_self_collision": False,
|
||||
"allow_wall_collision": False,
|
||||
"hole_width": None,
|
||||
"hole_depth": 1,
|
||||
"hole_x": None,
|
||||
"collision_penalty": 100,
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='HoleReacher-v2',
|
||||
entry_point='alr_envs.classic_control.hole_reacher:HoleReacherEnv',
|
||||
max_episode_steps=200,
|
||||
kwargs={
|
||||
"n_links": 5,
|
||||
"random_start": False,
|
||||
"allow_self_collision": False,
|
||||
"allow_wall_collision": False,
|
||||
"hole_width": 0.25,
|
||||
"hole_depth": 1,
|
||||
"hole_x": 2,
|
||||
@ -155,6 +214,25 @@ register(
|
||||
)
|
||||
|
||||
# MP environments
|
||||
## Simple Reacher
|
||||
versions = ["SimpleReacher-v0", "SimpleReacher-v1", "LongSimpleReacher-v0", "LongSimpleReacher-v1"]
|
||||
for v in versions:
|
||||
name = v.split("-")
|
||||
register(
|
||||
id=f'{name[0]}DMP-{name[1]}',
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env',
|
||||
# max_episode_steps=1,
|
||||
kwargs={
|
||||
"name": f"alr_envs:{v}",
|
||||
"num_dof": 2 if "long" not in v.lower() else 5,
|
||||
"num_basis": 5,
|
||||
"duration": 2,
|
||||
"alpha_phase": 2,
|
||||
"learn_goal": True,
|
||||
"policy_type": "velocity",
|
||||
"weights_scale": 50,
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='ViaPointReacherDMP-v0',
|
||||
@ -172,23 +250,33 @@ register(
|
||||
}
|
||||
)
|
||||
|
||||
register(
|
||||
id='HoleReacherDMP-v0',
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env',
|
||||
# max_episode_steps=1,
|
||||
kwargs={
|
||||
"name": "alr_envs:HoleReacher-v0",
|
||||
"num_dof": 5,
|
||||
"num_basis": 5,
|
||||
"duration": 2,
|
||||
"learn_goal": True,
|
||||
"alpha_phase": 2,
|
||||
"bandwidth_factor": 2,
|
||||
"policy_type": "velocity",
|
||||
"weights_scale": 50,
|
||||
"goal_scale": 0.1
|
||||
}
|
||||
)
|
||||
## Hole Reacher
|
||||
versions = ["v0", "v1", "v2"]
|
||||
for v in versions:
|
||||
register(
|
||||
id=f'HoleReacherDMP-{v}',
|
||||
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env',
|
||||
# max_episode_steps=1,
|
||||
kwargs={
|
||||
"name": f"alr_envs:HoleReacher-{v}",
|
||||
"num_dof": 5,
|
||||
"num_basis": 5,
|
||||
"duration": 2,
|
||||
"learn_goal": True,
|
||||
"alpha_phase": 2,
|
||||
"bandwidth_factor": 2,
|
||||
"policy_type": "velocity",
|
||||
"weights_scale": 50,
|
||||
"goal_scale": 0.1
|
||||
}
|
||||
)
|
||||
|
||||
# register(
|
||||
# id='HoleReacherDetPMP-v0',
|
||||
# entry_point='alr_envs.classic_control.hole_reacher:holereacher_detpmp',
|
||||
# # max_episode_steps=1,
|
||||
# # TODO: add mp kwargs
|
||||
# )
|
||||
|
||||
# TODO: properly add final_pos
|
||||
register(
|
||||
@ -208,12 +296,7 @@ register(
|
||||
}
|
||||
)
|
||||
|
||||
# register(
|
||||
# id='HoleReacherDetPMP-v0',
|
||||
# entry_point='alr_envs.classic_control.hole_reacher:holereacher_detpmp',
|
||||
# # max_episode_steps=1,
|
||||
# # TODO: add mp kwargs
|
||||
# )
|
||||
## Ball in Cup
|
||||
|
||||
register(
|
||||
id='ALRBallInACupSimpleDMP-v0',
|
||||
|
@ -1,3 +1,3 @@
|
||||
from alr_envs.classic_control.simple_reacher import SimpleReacherEnv
|
||||
from alr_envs.classic_control.viapoint_reacher import ViaPointReacher
|
||||
from alr_envs.classic_control.hole_reacher import HoleReacher
|
||||
from alr_envs.classic_control.hole_reacher import HoleReacherEnv
|
||||
|
@ -1,27 +1,36 @@
|
||||
from typing import Union
|
||||
|
||||
import gym
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from gym.utils import seeding
|
||||
from matplotlib import patches
|
||||
|
||||
from alr_envs.classic_control.utils import check_self_collision
|
||||
from alr_envs.utils.mps.mp_environments import MPEnv
|
||||
|
||||
|
||||
class HoleReacher(gym.Env):
|
||||
class HoleReacherEnv(MPEnv):
|
||||
|
||||
def __init__(self, n_links, hole_x, hole_width, hole_depth, allow_self_collision=False,
|
||||
allow_wall_collision=False, collision_penalty=1000):
|
||||
def __init__(self, n_links: int, hole_x: Union[None, float] = None, hole_depth: Union[None, float] = None,
|
||||
hole_width: float = 1., random_start: bool = False, allow_self_collision: bool = False,
|
||||
allow_wall_collision: bool = False, collision_penalty: bool = 1000):
|
||||
|
||||
self.n_links = n_links
|
||||
self.link_lengths = np.ones((n_links, 1))
|
||||
|
||||
# task
|
||||
self.hole_x = hole_x # x-position of center of hole
|
||||
self.hole_width = hole_width # width of hole
|
||||
self.hole_depth = hole_depth # depth of hole
|
||||
self.random_start = random_start
|
||||
|
||||
self.bottom_center_of_hole = np.hstack([hole_x, -hole_depth])
|
||||
self.top_center_of_hole = np.hstack([hole_x, 0])
|
||||
self.left_wall_edge = np.hstack([hole_x - self.hole_width / 2, 0])
|
||||
self.right_wall_edge = np.hstack([hole_x + self.hole_width / 2, 0])
|
||||
# provided initial parameters
|
||||
self._hole_x = hole_x # x-position of center of hole
|
||||
self._hole_width = hole_width # width of hole
|
||||
self._hole_depth = hole_depth # depth of hole
|
||||
|
||||
# temp container for current env state
|
||||
self._tmp_hole_x = None
|
||||
self._tmp_hole_width = None
|
||||
self._tmp_hole_depth = None
|
||||
self._goal = None # x-y coordinates for reaching the center at the bottom of the hole
|
||||
|
||||
# collision
|
||||
self.allow_self_collision = allow_self_collision
|
||||
@ -32,91 +41,77 @@ class HoleReacher(gym.Env):
|
||||
self._joints = None
|
||||
self._joint_angles = None
|
||||
self._angle_velocity = None
|
||||
self.start_pos = np.hstack([[np.pi / 2], np.zeros(self.n_links - 1)])
|
||||
self.start_vel = np.zeros(self.n_links)
|
||||
self._start_pos = np.hstack([[np.pi / 2], np.zeros(self.n_links - 1)])
|
||||
self._start_vel = np.zeros(self.n_links)
|
||||
|
||||
self.dt = 0.01
|
||||
# self.time_limit = 2
|
||||
|
||||
action_bound = np.pi * np.ones((self.n_links,))
|
||||
state_bound = np.hstack([
|
||||
[np.pi] * self.n_links, # cos
|
||||
[np.pi] * self.n_links, # sin
|
||||
[np.inf] * self.n_links, # velocity
|
||||
[np.inf], # hole width
|
||||
[np.inf], # hole depth
|
||||
[np.inf] * 2, # x-y coordinates of target distance
|
||||
[np.inf] # env steps, because reward start after n steps TODO: Maybe
|
||||
])
|
||||
self.action_space = gym.spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
|
||||
self.observation_space = gym.spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
|
||||
|
||||
# containers for plotting
|
||||
self.metadata = {'render.modes': ["human", "partial"]}
|
||||
self.fig = None
|
||||
rect_1 = patches.Rectangle((-self.n_links, -1),
|
||||
self.n_links + self.hole_x - self.hole_width / 2, 1,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
rect_2 = patches.Rectangle((self.hole_x + self.hole_width / 2, -1),
|
||||
self.n_links - self.hole_x + self.hole_width / 2, 1,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
rect_3 = patches.Rectangle((self.hole_x - self.hole_width / 2, -1), self.hole_width,
|
||||
1 - self.hole_depth,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
|
||||
self.patches = [rect_1, rect_2, rect_3]
|
||||
self._steps = 0
|
||||
self.seed()
|
||||
|
||||
@property
|
||||
def end_effector(self):
|
||||
return self._joints[self.n_links].T
|
||||
def step(self, action: np.ndarray):
|
||||
"""
|
||||
A single step with an action in joint velocity space
|
||||
"""
|
||||
|
||||
def configure(self, context):
|
||||
pass
|
||||
self._angle_velocity = action
|
||||
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
|
||||
self._update_joints()
|
||||
|
||||
acc = (action - self._angle_velocity) / self.dt
|
||||
reward, info = self._get_reward(acc)
|
||||
|
||||
info.update({"is_collided": self._is_collided})
|
||||
|
||||
self._steps += 1
|
||||
done = self._is_collided
|
||||
|
||||
return self._get_obs().copy(), reward, done, info
|
||||
|
||||
def reset(self):
|
||||
self._joint_angles = self.start_pos
|
||||
self._angle_velocity = self.start_vel
|
||||
if self.random_start:
|
||||
# Maybe change more than dirst seed
|
||||
first_joint = self.np_random.uniform(np.pi / 4, 3 * np.pi / 4)
|
||||
self._joint_angles = np.hstack([[first_joint], np.zeros(self.n_links - 1)])
|
||||
self._start_pos = self._joint_angles.copy()
|
||||
else:
|
||||
self._joint_angles = self._start_pos
|
||||
|
||||
self._generate_hole()
|
||||
self._set_patches()
|
||||
|
||||
self._angle_velocity = self._start_vel
|
||||
self._joints = np.zeros((self.n_links + 1, 2))
|
||||
self._update_joints()
|
||||
self._steps = 0
|
||||
|
||||
return self._get_obs().copy()
|
||||
|
||||
def step(self, action: np.ndarray):
|
||||
"""
|
||||
a single step with an action in joint velocity space
|
||||
"""
|
||||
vel = action # + 0.01 * np.random.randn(self.num_links)
|
||||
acc = (vel - self._angle_velocity) / self.dt
|
||||
self._angle_velocity = vel
|
||||
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
|
||||
|
||||
self._update_joints()
|
||||
|
||||
# rew = self._reward()
|
||||
|
||||
# compute reward directly in step function
|
||||
|
||||
success = False
|
||||
reward = 0
|
||||
if not self._is_collided:
|
||||
if self._steps == 199:
|
||||
dist = np.linalg.norm(self.end_effector - self.bottom_center_of_hole)
|
||||
reward = - dist ** 2
|
||||
success = dist < 0.005
|
||||
else:
|
||||
dist = np.linalg.norm(self.end_effector - self.bottom_center_of_hole)
|
||||
# if self.collision_penalty != 0:
|
||||
# reward = -self.collision_penalty
|
||||
# else:
|
||||
reward = - dist ** 2 - self.collision_penalty
|
||||
|
||||
reward -= 5e-8 * np.sum(acc ** 2)
|
||||
|
||||
info = {"is_collided": self._is_collided, "is_success": success}
|
||||
|
||||
self._steps += 1
|
||||
|
||||
# done = self._steps * self.dt > self.time_limit or self._is_collided
|
||||
done = self._is_collided
|
||||
|
||||
return self._get_obs().copy(), reward, done, info
|
||||
def _generate_hole(self):
|
||||
self._tmp_hole_x = self.np_random.uniform(0.5, 3.5, 1) if self._hole_x is None else np.copy(self._hole_x)
|
||||
self._tmp_hole_width = self.np_random.uniform(0.5, 0.1, 1) if self._hole_width is None else np.copy(
|
||||
self._hole_width)
|
||||
# TODO we do not want this right now.
|
||||
self._tmp_hole_depth = self.np_random.uniform(1, 1, 1) if self._hole_depth is None else np.copy(
|
||||
self._hole_depth)
|
||||
self._goal = np.hstack([self._tmp_hole_x, -self._tmp_hole_depth])
|
||||
|
||||
def _update_joints(self):
|
||||
"""
|
||||
@ -124,7 +119,7 @@ class HoleReacher(gym.Env):
|
||||
Returns:
|
||||
|
||||
"""
|
||||
line_points_in_taskspace = self.get_forward_kinematics(num_points_per_link=20)
|
||||
line_points_in_taskspace = self._get_forward_kinematics(num_points_per_link=20)
|
||||
|
||||
self._joints[1:, 0] = self._joints[0, 0] + line_points_in_taskspace[:, -1, 0]
|
||||
self._joints[1:, 1] = self._joints[0, 1] + line_points_in_taskspace[:, -1, 1]
|
||||
@ -138,48 +133,65 @@ class HoleReacher(gym.Env):
|
||||
self_collision = True
|
||||
|
||||
if not self.allow_wall_collision:
|
||||
wall_collision = self.check_wall_collision(line_points_in_taskspace)
|
||||
wall_collision = self._check_wall_collision(line_points_in_taskspace)
|
||||
|
||||
self._is_collided = self_collision or wall_collision
|
||||
|
||||
def _get_reward(self, acc: np.ndarray):
|
||||
success = False
|
||||
reward = -np.inf
|
||||
if not self._is_collided:
|
||||
dist = 0
|
||||
# return reward only in last time step
|
||||
if self._steps == 199:
|
||||
dist = np.linalg.norm(self.end_effector - self._goal)
|
||||
success = dist < 0.005
|
||||
else:
|
||||
# Episode terminates when colliding, hence return reward
|
||||
dist = np.linalg.norm(self.end_effector - self._goal)
|
||||
reward = -self.collision_penalty
|
||||
|
||||
reward -= dist ** 2
|
||||
reward -= 5e-8 * np.sum(acc ** 2)
|
||||
info = {"is_success": success}
|
||||
|
||||
return reward, info
|
||||
|
||||
def _get_obs(self):
|
||||
theta = self._joint_angles
|
||||
return np.hstack([
|
||||
np.cos(theta),
|
||||
np.sin(theta),
|
||||
self._angle_velocity,
|
||||
self.end_effector - self.bottom_center_of_hole,
|
||||
self._tmp_hole_width,
|
||||
self._tmp_hole_depth,
|
||||
self.end_effector - self._goal,
|
||||
self._steps
|
||||
])
|
||||
|
||||
def get_forward_kinematics(self, num_points_per_link=1):
|
||||
def _get_forward_kinematics(self, num_points_per_link=1):
|
||||
theta = self._joint_angles[:, None]
|
||||
|
||||
if num_points_per_link > 1:
|
||||
intermediate_points = np.linspace(0, 1, num_points_per_link)
|
||||
else:
|
||||
intermediate_points = 1
|
||||
|
||||
intermediate_points = np.linspace(0, 1, num_points_per_link) if num_points_per_link > 1 else 1
|
||||
accumulated_theta = np.cumsum(theta, axis=0)
|
||||
|
||||
endeffector = np.zeros(shape=(self.n_links, num_points_per_link, 2))
|
||||
end_effector = np.zeros(shape=(self.n_links, num_points_per_link, 2))
|
||||
|
||||
x = np.cos(accumulated_theta) * self.link_lengths * intermediate_points
|
||||
y = np.sin(accumulated_theta) * self.link_lengths * intermediate_points
|
||||
|
||||
endeffector[0, :, 0] = x[0, :]
|
||||
endeffector[0, :, 1] = y[0, :]
|
||||
end_effector[0, :, 0] = x[0, :]
|
||||
end_effector[0, :, 1] = y[0, :]
|
||||
|
||||
for i in range(1, self.n_links):
|
||||
endeffector[i, :, 0] = x[i, :] + endeffector[i - 1, -1, 0]
|
||||
endeffector[i, :, 1] = y[i, :] + endeffector[i - 1, -1, 1]
|
||||
end_effector[i, :, 0] = x[i, :] + end_effector[i - 1, -1, 0]
|
||||
end_effector[i, :, 1] = y[i, :] + end_effector[i - 1, -1, 1]
|
||||
|
||||
return np.squeeze(endeffector + self._joints[0, :])
|
||||
return np.squeeze(end_effector + self._joints[0, :])
|
||||
|
||||
def check_wall_collision(self, line_points):
|
||||
def _check_wall_collision(self, line_points):
|
||||
|
||||
# all points that are before the hole in x
|
||||
r, c = np.where(line_points[:, :, 0] < (self.hole_x - self.hole_width / 2))
|
||||
r, c = np.where(line_points[:, :, 0] < (self._tmp_hole_x - self._tmp_hole_width / 2))
|
||||
|
||||
# check if any of those points are below surface
|
||||
nr_line_points_below_surface_before_hole = np.sum(line_points[r, c, 1] < 0)
|
||||
@ -188,7 +200,7 @@ class HoleReacher(gym.Env):
|
||||
return True
|
||||
|
||||
# all points that are after the hole in x
|
||||
r, c = np.where(line_points[:, :, 0] > (self.hole_x + self.hole_width / 2))
|
||||
r, c = np.where(line_points[:, :, 0] > (self._tmp_hole_x + self._tmp_hole_width / 2))
|
||||
|
||||
# check if any of those points are below surface
|
||||
nr_line_points_below_surface_after_hole = np.sum(line_points[r, c, 1] < 0)
|
||||
@ -197,11 +209,11 @@ class HoleReacher(gym.Env):
|
||||
return True
|
||||
|
||||
# all points that are above the hole
|
||||
r, c = np.where((line_points[:, :, 0] > (self.hole_x - self.hole_width / 2)) & (
|
||||
line_points[:, :, 0] < (self.hole_x + self.hole_width / 2)))
|
||||
r, c = np.where((line_points[:, :, 0] > (self._tmp_hole_x - self._tmp_hole_width / 2)) & (
|
||||
line_points[:, :, 0] < (self._tmp_hole_x + self._tmp_hole_width / 2)))
|
||||
|
||||
# check if any of those points are below surface
|
||||
nr_line_points_below_surface_in_hole = np.sum(line_points[r, c, 1] < -self.hole_depth)
|
||||
nr_line_points_below_surface_in_hole = np.sum(line_points[r, c, 1] < -self._tmp_hole_depth)
|
||||
|
||||
if nr_line_points_below_surface_in_hole > 0:
|
||||
return True
|
||||
@ -210,61 +222,85 @@ class HoleReacher(gym.Env):
|
||||
|
||||
def render(self, mode='human'):
|
||||
if self.fig is None:
|
||||
# Create base figure once on the beginning. Afterwards only update
|
||||
plt.ion()
|
||||
self.fig = plt.figure()
|
||||
# plt.ion()
|
||||
# plt.pause(0.01)
|
||||
else:
|
||||
plt.figure(self.fig.number)
|
||||
ax = self.fig.add_subplot(1, 1, 1)
|
||||
|
||||
# limits
|
||||
lim = np.sum(self.link_lengths) + 0.5
|
||||
ax.set_xlim([-lim, lim])
|
||||
ax.set_ylim([-1.1, lim])
|
||||
|
||||
self.line, = ax.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
||||
self._set_patches()
|
||||
self.fig.show()
|
||||
|
||||
self.fig.gca().set_title(
|
||||
f"Iteration: {self._steps}, distance: {self.end_effector - self._goal}")
|
||||
|
||||
if mode == "human":
|
||||
plt.cla()
|
||||
plt.title(f"Iteration: {self._steps}, distance: {self.end_effector - self.bottom_center_of_hole}")
|
||||
|
||||
# Arm
|
||||
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
||||
# arm
|
||||
self.line.set_data(self._joints[:, 0], self._joints[:, 1])
|
||||
|
||||
# Add the patch to the Axes
|
||||
[plt.gca().add_patch(rect) for rect in self.patches]
|
||||
|
||||
lim = np.sum(self.link_lengths) + 0.5
|
||||
plt.xlim([-lim, lim])
|
||||
plt.ylim([-1.1, lim])
|
||||
# plt.draw()
|
||||
plt.pause(1e-4) # pushes window to foreground, which is annoying.
|
||||
# self.fig.canvas.flush_events()
|
||||
self.fig.canvas.draw()
|
||||
self.fig.canvas.flush_events()
|
||||
|
||||
elif mode == "partial":
|
||||
if self._steps == 1:
|
||||
# fig, ax = plt.subplots()
|
||||
# Add the patch to the Axes
|
||||
[plt.gca().add_patch(rect) for rect in self.patches]
|
||||
# plt.pause(0.01)
|
||||
|
||||
if self._steps % 20 == 0 or self._steps in [1, 199] or self._is_collided:
|
||||
# Arm
|
||||
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k', alpha=self._steps / 200)
|
||||
# ax.plot(line_points_in_taskspace[:, 0, 0],
|
||||
# line_points_in_taskspace[:, 0, 1],
|
||||
# line_points_in_taskspace[:, -1, 0],
|
||||
# line_points_in_taskspace[:, -1, 1], marker='o', color='k', alpha=t / 200)
|
||||
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k',
|
||||
alpha=self._steps / 200)
|
||||
|
||||
lim = np.sum(self.link_lengths) + 0.5
|
||||
plt.xlim([-lim, lim])
|
||||
plt.ylim([-1.1, lim])
|
||||
plt.pause(0.01)
|
||||
def _set_patches(self):
|
||||
if self.fig is not None:
|
||||
self.fig.gca().patches = []
|
||||
left_block = patches.Rectangle((-self.n_links, -self._tmp_hole_depth),
|
||||
self.n_links + self._tmp_hole_x - self._tmp_hole_width / 2,
|
||||
self._tmp_hole_depth,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
right_block = patches.Rectangle((self._tmp_hole_x + self._tmp_hole_width / 2, -self._tmp_hole_depth),
|
||||
self.n_links - self._tmp_hole_x + self._tmp_hole_width / 2,
|
||||
self._tmp_hole_depth,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
hole_floor = patches.Rectangle((self._tmp_hole_x - self._tmp_hole_width / 2, -self._tmp_hole_depth),
|
||||
self._tmp_hole_width,
|
||||
1 - self._tmp_hole_depth,
|
||||
fill=True, edgecolor='k', facecolor='k')
|
||||
|
||||
elif mode == "final":
|
||||
if self._steps == 199 or self._is_collided:
|
||||
# fig, ax = plt.subplots()
|
||||
# Add the patch to the Axes
|
||||
self.fig.gca().add_patch(left_block)
|
||||
self.fig.gca().add_patch(right_block)
|
||||
self.fig.gca().add_patch(hole_floor)
|
||||
|
||||
# Add the patch to the Axes
|
||||
[plt.gca().add_patch(rect) for rect in self.patches]
|
||||
@property
|
||||
def active_obs(self):
|
||||
return np.hstack([
|
||||
[self.random_start] * self.n_links, # cos
|
||||
[self.random_start] * self.n_links, # sin
|
||||
[self.random_start] * self.n_links, # velocity
|
||||
[self._hole_width is None], # hole width
|
||||
[self._hole_depth is None], # hole width
|
||||
[True] * 2, # x-y coordinates of target distance
|
||||
[False] # env steps
|
||||
])
|
||||
|
||||
plt.xlim(-self.n_links, self.n_links), plt.ylim(-1, self.n_links)
|
||||
# Arm
|
||||
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
||||
@property
|
||||
def start_pos(self) -> Union[float, int, np.ndarray]:
|
||||
return self._start_pos
|
||||
|
||||
plt.pause(0.01)
|
||||
@property
|
||||
def goal_pos(self) -> Union[float, int, np.ndarray]:
|
||||
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
|
||||
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
@property
|
||||
def end_effector(self):
|
||||
return self._joints[self.n_links].T
|
||||
|
||||
def close(self):
|
||||
if self.fig is not None:
|
||||
@ -274,22 +310,20 @@ class HoleReacher(gym.Env):
|
||||
if __name__ == '__main__':
|
||||
nl = 5
|
||||
render_mode = "human" # "human" or "partial" or "final"
|
||||
env = HoleReacher(n_links=nl, allow_self_collision=False, allow_wall_collision=False, hole_width=0.15,
|
||||
hole_depth=1, hole_x=1)
|
||||
env.reset()
|
||||
# env.render(mode=render_mode)
|
||||
env = HoleReacherEnv(n_links=nl, allow_self_collision=False, allow_wall_collision=False, hole_width=None,
|
||||
hole_depth=1, hole_x=None)
|
||||
obs = env.reset()
|
||||
|
||||
for i in range(200):
|
||||
# objective.load_result("/tmp/cma")
|
||||
# test with random actions
|
||||
ac = 2 * env.action_space.sample()
|
||||
# ac[0] += np.pi/2
|
||||
obs, rew, d, info = env.step(ac)
|
||||
env.render(mode=render_mode)
|
||||
|
||||
print(rew)
|
||||
|
||||
if d:
|
||||
break
|
||||
env.reset()
|
||||
|
||||
env.close()
|
||||
|
@ -1,39 +1,41 @@
|
||||
import gym
|
||||
from typing import Iterable, Union
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from gym import spaces
|
||||
from gym.utils import seeding
|
||||
|
||||
from alr_envs.utils.utils import angle_normalize
|
||||
from alr_envs.utils.mps.mp_environments import MPEnv
|
||||
|
||||
|
||||
# if os.environ.get("DISPLAY", None):
|
||||
# mpl.use('Qt5Agg')
|
||||
|
||||
|
||||
class SimpleReacherEnv(gym.Env):
|
||||
class SimpleReacherEnv(MPEnv):
|
||||
"""
|
||||
Simple Reaching Task without any physics simulation.
|
||||
Returns no reward until 150 time steps. This allows the agent to explore the space, but requires precise actions
|
||||
towards the end of the trajectory.
|
||||
"""
|
||||
|
||||
def __init__(self, n_links):
|
||||
def __init__(self, n_links: int, target: Union[None, Iterable] = None, random_start: bool = True):
|
||||
super().__init__()
|
||||
self.link_lengths = np.ones(n_links)
|
||||
self.n_links = n_links
|
||||
self.dt = 0.1
|
||||
|
||||
self._goal_pos = None
|
||||
self.random_start = random_start
|
||||
|
||||
self._joints = None
|
||||
self._joint_angle = None
|
||||
self._joint_angles = None
|
||||
self._angle_velocity = None
|
||||
self._start_pos = np.zeros(self.n_links)
|
||||
self._start_vel = np.zeros(self.n_links)
|
||||
|
||||
self.max_torque = 1 # 10
|
||||
self._target = target # provided target value
|
||||
self._goal = None # updated goal value, does not change when target != None
|
||||
|
||||
self.max_torque = 1
|
||||
self.steps_before_reward = 199
|
||||
|
||||
action_bound = np.ones((self.n_links,))
|
||||
action_bound = np.ones((self.n_links,)) * self.max_torque
|
||||
state_bound = np.hstack([
|
||||
[np.pi] * self.n_links, # cos
|
||||
[np.pi] * self.n_links, # sin
|
||||
@ -44,49 +46,50 @@ class SimpleReacherEnv(gym.Env):
|
||||
self.action_space = spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
|
||||
self.observation_space = spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
|
||||
|
||||
self.fig = None
|
||||
# containers for plotting
|
||||
self.metadata = {'render.modes': ["human"]}
|
||||
self.fig = None
|
||||
|
||||
self._steps = 0
|
||||
self.seed()
|
||||
|
||||
def step(self, action: np.ndarray):
|
||||
"""
|
||||
A single step with action in torque space
|
||||
"""
|
||||
|
||||
# action = self._add_action_noise(action)
|
||||
action = np.clip(action, -self.max_torque, self.max_torque)
|
||||
ac = np.clip(action, -self.max_torque, self.max_torque)
|
||||
|
||||
self._angle_velocity = self._angle_velocity + self.dt * action
|
||||
self._joint_angle = angle_normalize(self._joint_angle + self.dt * self._angle_velocity)
|
||||
self._angle_velocity = self._angle_velocity + self.dt * ac
|
||||
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
|
||||
self._update_joints()
|
||||
self._steps += 1
|
||||
|
||||
reward, info = self._get_reward(action)
|
||||
|
||||
# done = np.abs(self.end_effector - self._goal_pos) < 0.1
|
||||
self._steps += 1
|
||||
done = False
|
||||
|
||||
return self._get_obs().copy(), reward, done, info
|
||||
|
||||
def _add_action_noise(self, action: np.ndarray):
|
||||
"""
|
||||
add unobserved Gaussian Noise N(0,0.01) to the actions
|
||||
Args:
|
||||
action:
|
||||
def reset(self):
|
||||
|
||||
Returns: actions with noise
|
||||
# TODO: maybe do initialisation more random?
|
||||
# Sample only orientation of first link, i.e. the arm is always straight.
|
||||
if self.random_start:
|
||||
self._joint_angles = np.hstack([[self.np_random.uniform(-np.pi, np.pi)], np.zeros(self.n_links - 1)])
|
||||
self._start_pos = self._joint_angles.copy()
|
||||
else:
|
||||
self._joint_angles = self._start_pos
|
||||
|
||||
"""
|
||||
return self.np_random.normal(0, 0.1, *action.shape) + action
|
||||
self._generate_goal()
|
||||
|
||||
def _get_obs(self):
|
||||
theta = self._joint_angle
|
||||
return np.hstack([
|
||||
np.cos(theta),
|
||||
np.sin(theta),
|
||||
self._angle_velocity,
|
||||
self.end_effector - self._goal_pos,
|
||||
self._steps
|
||||
])
|
||||
self._angle_velocity = self._start_vel
|
||||
self._joints = np.zeros((self.n_links + 1, 2))
|
||||
self._update_joints()
|
||||
self._steps = 0
|
||||
|
||||
return self._get_obs().copy()
|
||||
|
||||
def _update_joints(self):
|
||||
"""
|
||||
@ -94,15 +97,14 @@ class SimpleReacherEnv(gym.Env):
|
||||
Returns:
|
||||
|
||||
"""
|
||||
angles = np.cumsum(self._joint_angle)
|
||||
angles = np.cumsum(self._joint_angles)
|
||||
x = self.link_lengths * np.vstack([np.cos(angles), np.sin(angles)])
|
||||
self._joints[1:] = self._joints[0] + np.cumsum(x.T, axis=0)
|
||||
|
||||
def _get_reward(self, action: np.ndarray):
|
||||
diff = self.end_effector - self._goal_pos
|
||||
diff = self.end_effector - self._goal
|
||||
reward_dist = 0
|
||||
|
||||
# TODO: Is this the best option
|
||||
if self._steps >= self.steps_before_reward:
|
||||
reward_dist -= np.linalg.norm(diff)
|
||||
# reward_dist = np.exp(-0.1 * diff ** 2).mean()
|
||||
@ -112,62 +114,112 @@ class SimpleReacherEnv(gym.Env):
|
||||
reward = reward_dist - reward_ctrl
|
||||
return reward, dict(reward_dist=reward_dist, reward_ctrl=reward_ctrl)
|
||||
|
||||
def reset(self):
|
||||
def _get_obs(self):
|
||||
theta = self._joint_angles
|
||||
return np.hstack([
|
||||
np.cos(theta),
|
||||
np.sin(theta),
|
||||
self._angle_velocity,
|
||||
self.end_effector - self._goal,
|
||||
self._steps
|
||||
])
|
||||
|
||||
# TODO: maybe do initialisation more random?
|
||||
# Sample only orientation of first link, i.e. the arm is always straight.
|
||||
self._joint_angle = np.hstack([[self.np_random.uniform(-np.pi, np.pi)], np.zeros(self.n_links - 1)])
|
||||
self._angle_velocity = np.zeros(self.n_links)
|
||||
self._joints = np.zeros((self.n_links + 1, 2))
|
||||
self._update_joints()
|
||||
self._steps = 0
|
||||
def _generate_goal(self):
|
||||
|
||||
self._goal_pos = self._get_random_goal()
|
||||
return self._get_obs().copy()
|
||||
if self._target is None:
|
||||
|
||||
def _get_random_goal(self):
|
||||
center = self._joints[0]
|
||||
total_length = np.sum(self.link_lengths)
|
||||
goal = np.array([total_length, total_length])
|
||||
while np.linalg.norm(goal) >= total_length:
|
||||
goal = self.np_random.uniform(low=-total_length, high=total_length, size=2)
|
||||
else:
|
||||
goal = np.copy(self._target)
|
||||
|
||||
# Sample uniformly in circle with radius R around center of reacher.
|
||||
R = np.sum(self.link_lengths)
|
||||
r = R * np.sqrt(self.np_random.uniform())
|
||||
theta = self.np_random.uniform() * 2 * np.pi
|
||||
return center + r * np.stack([np.cos(theta), np.sin(theta)])
|
||||
self._goal = goal
|
||||
|
||||
def render(self, mode='human'): # pragma: no cover
|
||||
if self.fig is None:
|
||||
# Create base figure once on the beginning. Afterwards only update
|
||||
plt.ion()
|
||||
self.fig = plt.figure()
|
||||
ax = self.fig.add_subplot(1, 1, 1)
|
||||
|
||||
# limits
|
||||
lim = np.sum(self.link_lengths) + 0.5
|
||||
ax.set_xlim([-lim, lim])
|
||||
ax.set_ylim([-lim, lim])
|
||||
|
||||
self.line, = ax.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
||||
goal_pos = self._goal.T
|
||||
self.goal_point, = ax.plot(goal_pos[0], goal_pos[1], 'gx')
|
||||
self.goal_dist, = ax.plot([self.end_effector[0], goal_pos[0]], [self.end_effector[1], goal_pos[1]], 'g--')
|
||||
|
||||
self.fig.show()
|
||||
|
||||
self.fig.gca().set_title(f"Iteration: {self._steps}, distance: {self.end_effector - self._goal}")
|
||||
|
||||
# goal
|
||||
goal_pos = self._goal.T
|
||||
if self._steps == 1:
|
||||
self.goal_point.set_data(goal_pos[0], goal_pos[1])
|
||||
|
||||
# arm
|
||||
self.line.set_data(self._joints[:, 0], self._joints[:, 1])
|
||||
|
||||
# distance between end effector and goal
|
||||
self.goal_dist.set_data([self.end_effector[0], goal_pos[0]], [self.end_effector[1], goal_pos[1]])
|
||||
|
||||
self.fig.canvas.draw()
|
||||
self.fig.canvas.flush_events()
|
||||
|
||||
@property
|
||||
def active_obs(self):
|
||||
return np.hstack([
|
||||
[self.random_start] * self.n_links, # cos
|
||||
[self.random_start] * self.n_links, # sin
|
||||
[self.random_start] * self.n_links, # velocity
|
||||
[True] * 2, # x-y coordinates of target distance
|
||||
[False] # env steps
|
||||
])
|
||||
|
||||
@property
|
||||
def start_pos(self):
|
||||
return self._start_pos
|
||||
|
||||
@property
|
||||
def goal_pos(self):
|
||||
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
|
||||
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
def render(self, mode='human'): # pragma: no cover
|
||||
if self.fig is None:
|
||||
self.fig = plt.figure()
|
||||
plt.ion()
|
||||
plt.show()
|
||||
else:
|
||||
plt.figure(self.fig.number)
|
||||
|
||||
plt.cla()
|
||||
plt.title(f"Iteration: {self._steps}, distance: {self.end_effector - self._goal_pos}")
|
||||
|
||||
# Arm
|
||||
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
||||
|
||||
# goal
|
||||
goal_pos = self._goal_pos.T
|
||||
plt.plot(goal_pos[0], goal_pos[1], 'gx')
|
||||
# distance between end effector and goal
|
||||
plt.plot([self.end_effector[0], goal_pos[0]], [self.end_effector[1], goal_pos[1]], 'g--')
|
||||
|
||||
lim = np.sum(self.link_lengths) + 0.5
|
||||
plt.xlim([-lim, lim])
|
||||
plt.ylim([-lim, lim])
|
||||
# plt.draw()
|
||||
# plt.pause(1e-4) pushes window to foreground, which is annoying.
|
||||
self.fig.canvas.flush_events()
|
||||
|
||||
def close(self):
|
||||
del self.fig
|
||||
|
||||
@property
|
||||
def end_effector(self):
|
||||
return self._joints[self.n_links].T
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
nl = 5
|
||||
render_mode = "human" # "human" or "partial" or "final"
|
||||
env = SimpleReacherEnv(n_links=nl)
|
||||
obs = env.reset()
|
||||
print("First", obs)
|
||||
|
||||
for i in range(2000):
|
||||
# objective.load_result("/tmp/cma")
|
||||
# test with random actions
|
||||
ac = 2 * env.action_space.sample()
|
||||
# ac = np.ones(env.action_space.shape)
|
||||
obs, rew, d, info = env.step(ac)
|
||||
env.render(mode=render_mode)
|
||||
|
||||
print(obs[env.active_obs].shape)
|
||||
|
||||
if d or i % 200 == 0:
|
||||
env.reset()
|
||||
|
||||
env.close()
|
||||
|
@ -1,19 +1,31 @@
|
||||
from typing import Iterable, Union
|
||||
|
||||
import gym
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from gym.utils import seeding
|
||||
|
||||
from alr_envs.classic_control.utils import check_self_collision
|
||||
from alr_envs.utils.mps.mp_environments import MPEnv
|
||||
|
||||
|
||||
class ViaPointReacher(gym.Env):
|
||||
class ViaPointReacher(MPEnv):
|
||||
|
||||
def __init__(self, n_links, allow_self_collision=False, collision_penalty=1000):
|
||||
self.num_links = n_links
|
||||
def __init__(self, n_links, random_start: bool = True, via_target: Union[None, Iterable] = None,
|
||||
target: Union[None, Iterable] = None, allow_self_collision=False, collision_penalty=1000):
|
||||
|
||||
self.n_links = n_links
|
||||
self.link_lengths = np.ones((n_links, 1))
|
||||
|
||||
# task
|
||||
self.via_point = np.ones(2)
|
||||
self.goal_point = np.array((n_links, 0))
|
||||
self.random_start = random_start
|
||||
|
||||
# provided initial parameters
|
||||
self._target = target # provided target value
|
||||
self._via_target = via_target # provided via point target value
|
||||
|
||||
# temp container for current env state
|
||||
self._via_point = np.ones(2)
|
||||
self._goal = np.array((n_links, 0))
|
||||
|
||||
# collision
|
||||
self.allow_self_collision = allow_self_collision
|
||||
@ -23,78 +35,93 @@ class ViaPointReacher(gym.Env):
|
||||
self._joints = None
|
||||
self._joint_angles = None
|
||||
self._angle_velocity = None
|
||||
self.start_pos = np.hstack([[np.pi / 2], np.zeros(self.num_links - 1)])
|
||||
self.start_vel = np.zeros(self.num_links)
|
||||
self._start_pos = np.hstack([[np.pi / 2], np.zeros(self.n_links - 1)])
|
||||
self._start_vel = np.zeros(self.n_links)
|
||||
self.weight_matrix_scale = 1
|
||||
|
||||
self._steps = 0
|
||||
self.dt = 0.01
|
||||
# self.time_limit = 2
|
||||
|
||||
action_bound = np.pi * np.ones((self.num_links,))
|
||||
action_bound = np.pi * np.ones((self.n_links,))
|
||||
state_bound = np.hstack([
|
||||
[np.pi] * self.num_links, # cos
|
||||
[np.pi] * self.num_links, # sin
|
||||
[np.inf] * self.num_links, # velocity
|
||||
[np.pi] * self.n_links, # cos
|
||||
[np.pi] * self.n_links, # sin
|
||||
[np.inf] * self.n_links, # velocity
|
||||
[np.inf] * 2, # x-y coordinates of via point distance
|
||||
[np.inf] * 2, # x-y coordinates of target distance
|
||||
[np.inf] # env steps, because reward start after n steps TODO: Maybe
|
||||
[np.inf] # env steps, because reward start after n steps
|
||||
])
|
||||
self.action_space = gym.spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape)
|
||||
self.observation_space = gym.spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
|
||||
|
||||
# containers for plotting
|
||||
self.metadata = {'render.modes': ["human", "partial"]}
|
||||
self.fig = None
|
||||
|
||||
@property
|
||||
def end_effector(self):
|
||||
return self._joints[self.num_links].T
|
||||
|
||||
def configure(self, context):
|
||||
pass
|
||||
|
||||
def reset(self):
|
||||
self._joint_angles = self.start_pos
|
||||
self._angle_velocity = self.start_vel
|
||||
self._joints = np.zeros((self.num_links + 1, 2))
|
||||
self._update_joints()
|
||||
self._steps = 0
|
||||
|
||||
return self._get_obs().copy()
|
||||
self.seed()
|
||||
|
||||
def step(self, action: np.ndarray):
|
||||
"""
|
||||
a single step with an action in joint velocity space
|
||||
"""
|
||||
vel = action
|
||||
acc = (vel - self._angle_velocity) / self.dt
|
||||
self._angle_velocity = vel
|
||||
self._joint_angles = self._joint_angles + self.dt * self._angle_velocity
|
||||
|
||||
self._update_joints()
|
||||
|
||||
dist_reward = 0
|
||||
if not self._is_collided:
|
||||
if self._steps == 100:
|
||||
dist_reward = np.linalg.norm(self.end_effector - self.via_point)
|
||||
elif self._steps == 199:
|
||||
dist_reward = np.linalg.norm(self.end_effector - self.goal_point)
|
||||
acc = (vel - self._angle_velocity) / self.dt
|
||||
reward, info = self._get_reward(acc)
|
||||
|
||||
# TODO: Do we need that?
|
||||
reward = - dist_reward ** 2
|
||||
|
||||
reward -= 5e-8 * np.sum(acc**2)
|
||||
|
||||
if self._is_collided:
|
||||
reward -= self.collision_penalty
|
||||
|
||||
info = {"is_collided": self._is_collided}
|
||||
info.update({"is_collided": self._is_collided})
|
||||
|
||||
self._steps += 1
|
||||
|
||||
# done = self._steps * self.dt > self.time_limit or self._is_collided
|
||||
done = self._is_collided
|
||||
|
||||
return self._get_obs().copy(), reward, done, info
|
||||
|
||||
def reset(self):
|
||||
|
||||
if self.random_start:
|
||||
# Maybe change more than dirst seed
|
||||
first_joint = self.np_random.uniform(np.pi / 4, 3 * np.pi / 4)
|
||||
self._joint_angles = np.hstack([[first_joint], np.zeros(self.n_links - 1)])
|
||||
self._start_pos = self._joint_angles.copy()
|
||||
else:
|
||||
self._joint_angles = self._start_pos
|
||||
|
||||
self._generate_goal()
|
||||
|
||||
self._angle_velocity = self._start_vel
|
||||
self._joints = np.zeros((self.n_links + 1, 2))
|
||||
self._update_joints()
|
||||
self._steps = 0
|
||||
|
||||
return self._get_obs().copy()
|
||||
|
||||
def _generate_goal(self):
|
||||
# TODO: Maybe improve this later, this can yield quite a lot of invalid settings
|
||||
|
||||
total_length = np.sum(self.link_lengths)
|
||||
|
||||
# rejection sampled point in inner circle with 0.5*Radius
|
||||
if self._via_target is None:
|
||||
via_target = np.array([total_length, total_length])
|
||||
while np.linalg.norm(via_target) >= 0.5 * total_length:
|
||||
via_target = self.np_random.uniform(low=-0.5 * total_length, high=0.5 * total_length, size=2)
|
||||
else:
|
||||
via_target = np.copy(self._via_target)
|
||||
|
||||
# rejection sampled point in outer circle
|
||||
if self._target is None:
|
||||
goal = np.array([total_length, total_length])
|
||||
while np.linalg.norm(goal) >= total_length or np.linalg.norm(goal) <= 0.5 * total_length:
|
||||
goal = self.np_random.uniform(low=-total_length, high=total_length, size=2)
|
||||
else:
|
||||
goal = np.copy(self._target)
|
||||
|
||||
self._via_target = via_target
|
||||
self._goal = goal
|
||||
|
||||
def _update_joints(self):
|
||||
"""
|
||||
update _joints to get new end effector position. The other links are only required for rendering.
|
||||
@ -115,14 +142,38 @@ class ViaPointReacher(gym.Env):
|
||||
|
||||
self._is_collided = self_collision
|
||||
|
||||
def _get_reward(self, acc):
|
||||
success = False
|
||||
reward = -np.inf
|
||||
if not self._is_collided:
|
||||
dist = np.inf
|
||||
# return intermediate reward for via point
|
||||
if self._steps == 100:
|
||||
dist = np.linalg.norm(self.end_effector - self._via_point)
|
||||
# return reward in last time step for goal
|
||||
elif self._steps == 199:
|
||||
dist = np.linalg.norm(self.end_effector - self._goal)
|
||||
|
||||
success = dist < 0.005
|
||||
else:
|
||||
# Episode terminates when colliding, hence return reward
|
||||
dist = np.linalg.norm(self.end_effector - self._goal)
|
||||
reward = -self.collision_penalty
|
||||
|
||||
reward -= dist ** 2
|
||||
reward -= 5e-8 * np.sum(acc ** 2)
|
||||
info = {"is_success": success}
|
||||
|
||||
return reward, info
|
||||
|
||||
def _get_obs(self):
|
||||
theta = self._joint_angles
|
||||
return np.hstack([
|
||||
np.cos(theta),
|
||||
np.sin(theta),
|
||||
self._angle_velocity,
|
||||
self.end_effector - self.via_point,
|
||||
self.end_effector - self.goal_point,
|
||||
self.end_effector - self._via_point,
|
||||
self.end_effector - self._goal,
|
||||
self._steps
|
||||
])
|
||||
|
||||
@ -133,7 +184,7 @@ class ViaPointReacher(gym.Env):
|
||||
|
||||
accumulated_theta = np.cumsum(theta, axis=0)
|
||||
|
||||
endeffector = np.zeros(shape=(self.num_links, num_points_per_link, 2))
|
||||
endeffector = np.zeros(shape=(self.n_links, num_points_per_link, 2))
|
||||
|
||||
x = np.cos(accumulated_theta) * self.link_lengths * intermediate_points
|
||||
y = np.sin(accumulated_theta) * self.link_lengths * intermediate_points
|
||||
@ -141,33 +192,46 @@ class ViaPointReacher(gym.Env):
|
||||
endeffector[0, :, 0] = x[0, :]
|
||||
endeffector[0, :, 1] = y[0, :]
|
||||
|
||||
for i in range(1, self.num_links):
|
||||
for i in range(1, self.n_links):
|
||||
endeffector[i, :, 0] = x[i, :] + endeffector[i - 1, -1, 0]
|
||||
endeffector[i, :, 1] = y[i, :] + endeffector[i - 1, -1, 1]
|
||||
|
||||
return np.squeeze(endeffector + self._joints[0, :])
|
||||
|
||||
def render(self, mode='human'):
|
||||
goal_pos = self._goal.T
|
||||
via_pos = self._via_point.T
|
||||
|
||||
if self.fig is None:
|
||||
# Create base figure once on the beginning. Afterwards only update
|
||||
plt.ion()
|
||||
self.fig = plt.figure()
|
||||
# plt.ion()
|
||||
# plt.pause(0.01)
|
||||
else:
|
||||
plt.figure(self.fig.number)
|
||||
ax = self.fig.add_subplot(1, 1, 1)
|
||||
|
||||
# limits
|
||||
lim = np.sum(self.link_lengths) + 0.5
|
||||
ax.set_xlim([-lim, lim])
|
||||
ax.set_ylim([-lim, lim])
|
||||
|
||||
self.line, = ax.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
||||
self.goal_point_plot, = ax.plot(goal_pos[0], goal_pos[1], 'go')
|
||||
self.via_point_plot, = ax.plot(via_pos[0], via_pos[1], 'gx')
|
||||
|
||||
self.fig.show()
|
||||
|
||||
self.fig.gca().set_title(f"Iteration: {self._steps}, distance: {self.end_effector - self._goal}")
|
||||
|
||||
if mode == "human":
|
||||
plt.cla()
|
||||
plt.title(f"Iteration: {self._steps}")
|
||||
# goal
|
||||
if self._steps == 1:
|
||||
self.goal_point_plot.set_data(goal_pos[0], goal_pos[1])
|
||||
self.via_point_plot.set_data(via_pos[0], goal_pos[1])
|
||||
|
||||
# Arm
|
||||
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
||||
# arm
|
||||
self.line.set_data(self._joints[:, 0], self._joints[:, 1])
|
||||
|
||||
lim = np.sum(self.link_lengths) + 0.5
|
||||
plt.xlim([-lim, lim])
|
||||
plt.ylim([-lim, lim])
|
||||
# plt.draw()
|
||||
plt.pause(1e-4) # pushes window to foreground, which is annoying.
|
||||
# self.fig.canvas.flush_events()
|
||||
self.fig.canvas.draw()
|
||||
self.fig.canvas.flush_events()
|
||||
|
||||
elif mode == "partial":
|
||||
if self._steps == 1:
|
||||
@ -196,12 +260,39 @@ class ViaPointReacher(gym.Env):
|
||||
# Add the patch to the Axes
|
||||
[plt.gca().add_patch(rect) for rect in self.patches]
|
||||
|
||||
plt.xlim(-self.num_links, self.num_links), plt.ylim(-1, self.num_links)
|
||||
plt.xlim(-self.n_links, self.n_links), plt.ylim(-1, self.n_links)
|
||||
# Arm
|
||||
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
|
||||
|
||||
plt.pause(0.01)
|
||||
|
||||
@property
|
||||
def active_obs(self):
|
||||
return np.hstack([
|
||||
[self.random_start] * self.n_links, # cos
|
||||
[self.random_start] * self.n_links, # sin
|
||||
[self.random_start] * self.n_links, # velocity
|
||||
[self._via_target is None] * 2, # x-y coordinates of via point distance
|
||||
[True] * 2, # x-y coordinates of target distance
|
||||
[False] # env steps
|
||||
])
|
||||
|
||||
@property
|
||||
def start_pos(self) -> Union[float, int, np.ndarray]:
|
||||
return self._start_pos
|
||||
|
||||
@property
|
||||
def goal_pos(self) -> Union[float, int, np.ndarray]:
|
||||
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
|
||||
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
@property
|
||||
def end_effector(self):
|
||||
return self._joints[self.n_links].T
|
||||
|
||||
def close(self):
|
||||
if self.fig is not None:
|
||||
plt.close(self.fig)
|
||||
|
@ -1,5 +1,5 @@
|
||||
from alr_envs.utils.wrapper.detpmp_wrapper import DetPMPWrapper
|
||||
from alr_envs.utils.wrapper.dmp_wrapper import DmpWrapper
|
||||
from alr_envs.utils.mps.detpmp_wrapper import DetPMPWrapper
|
||||
from alr_envs.utils.mps.dmp_wrapper import DmpWrapper
|
||||
from alr_envs.mujoco.ball_in_a_cup.ball_in_a_cup import ALRBallInACupEnv
|
||||
|
||||
|
||||
@ -17,19 +17,8 @@ def make_contextual_env(rank, seed=0):
|
||||
def _init():
|
||||
env = ALRBallInACupEnv(reward_type="contextual_goal")
|
||||
|
||||
env = DetPMPWrapper(env,
|
||||
num_dof=7,
|
||||
num_basis=5,
|
||||
width=0.005,
|
||||
policy_type="motor",
|
||||
start_pos=env.start_pos,
|
||||
duration=3.5,
|
||||
post_traj_time=4.5,
|
||||
dt=env.dt,
|
||||
weights_scale=0.5,
|
||||
zero_start=True,
|
||||
zero_goal=True
|
||||
)
|
||||
env = DetPMPWrapper(env, num_dof=7, num_basis=5, width=0.005, duration=3.5, dt=env.dt, post_traj_time=4.5,
|
||||
policy_type="motor", weights_scale=0.5, zero_start=True, zero_goal=True)
|
||||
|
||||
env.seed(seed + rank)
|
||||
return env
|
||||
@ -51,19 +40,8 @@ def make_env(rank, seed=0):
|
||||
def _init():
|
||||
env = ALRBallInACupEnv(reward_type="simple")
|
||||
|
||||
env = DetPMPWrapper(env,
|
||||
num_dof=7,
|
||||
num_basis=5,
|
||||
width=0.005,
|
||||
policy_type="motor",
|
||||
start_pos=env.start_pos,
|
||||
duration=3.5,
|
||||
post_traj_time=4.5,
|
||||
dt=env.dt,
|
||||
weights_scale=0.2,
|
||||
zero_start=True,
|
||||
zero_goal=True
|
||||
)
|
||||
env = DetPMPWrapper(env, num_dof=7, num_basis=5, width=0.005, duration=3.5, dt=env.dt, post_traj_time=4.5,
|
||||
policy_type="motor", weights_scale=0.2, zero_start=True, zero_goal=True)
|
||||
|
||||
env.seed(seed + rank)
|
||||
return env
|
||||
@ -85,20 +63,8 @@ def make_simple_env(rank, seed=0):
|
||||
def _init():
|
||||
env = ALRBallInACupEnv(reward_type="simple")
|
||||
|
||||
env = DetPMPWrapper(env,
|
||||
num_dof=3,
|
||||
num_basis=5,
|
||||
width=0.005,
|
||||
off=-0.1,
|
||||
policy_type="motor",
|
||||
start_pos=env.start_pos[1::2],
|
||||
duration=3.5,
|
||||
post_traj_time=4.5,
|
||||
dt=env.dt,
|
||||
weights_scale=0.25,
|
||||
zero_start=True,
|
||||
zero_goal=True
|
||||
)
|
||||
env = DetPMPWrapper(env, num_dof=3, num_basis=5, width=0.005, duration=3.5, dt=env.dt, post_traj_time=4.5,
|
||||
policy_type="motor", weights_scale=0.25, zero_start=True, zero_goal=True, off=-0.1)
|
||||
|
||||
env.seed(seed + rank)
|
||||
return env
|
||||
|
@ -1,4 +1,4 @@
|
||||
from alr_envs.utils.wrapper.detpmp_wrapper import DetPMPWrapper
|
||||
from alr_envs.utils.mps.detpmp_wrapper import DetPMPWrapper
|
||||
from alr_envs.mujoco.beerpong.beerpong import ALRBeerpongEnv
|
||||
from alr_envs.mujoco.beerpong.beerpong_simple import ALRBeerpongEnv as ALRBeerpongEnvSimple
|
||||
|
||||
@ -17,19 +17,8 @@ def make_contextual_env(rank, seed=0):
|
||||
def _init():
|
||||
env = ALRBeerpongEnv()
|
||||
|
||||
env = DetPMPWrapper(env,
|
||||
num_dof=7,
|
||||
num_basis=5,
|
||||
width=0.005,
|
||||
policy_type="motor",
|
||||
start_pos=env.start_pos,
|
||||
duration=3.5,
|
||||
post_traj_time=4.5,
|
||||
dt=env.dt,
|
||||
weights_scale=0.5,
|
||||
zero_start=True,
|
||||
zero_goal=True
|
||||
)
|
||||
env = DetPMPWrapper(env, num_dof=7, num_basis=5, width=0.005, duration=3.5, dt=env.dt, post_traj_time=4.5,
|
||||
policy_type="motor", weights_scale=0.5, zero_start=True, zero_goal=True)
|
||||
|
||||
env.seed(seed + rank)
|
||||
return env
|
||||
@ -51,19 +40,8 @@ def make_env(rank, seed=0):
|
||||
def _init():
|
||||
env = ALRBeerpongEnvSimple()
|
||||
|
||||
env = DetPMPWrapper(env,
|
||||
num_dof=7,
|
||||
num_basis=5,
|
||||
width=0.005,
|
||||
policy_type="motor",
|
||||
start_pos=env.start_pos,
|
||||
duration=3.5,
|
||||
post_traj_time=4.5,
|
||||
dt=env.dt,
|
||||
weights_scale=0.25,
|
||||
zero_start=True,
|
||||
zero_goal=True
|
||||
)
|
||||
env = DetPMPWrapper(env, num_dof=7, num_basis=5, width=0.005, duration=3.5, dt=env.dt, post_traj_time=4.5,
|
||||
policy_type="motor", weights_scale=0.25, zero_start=True, zero_goal=True)
|
||||
|
||||
env.seed(seed + rank)
|
||||
return env
|
||||
@ -85,19 +63,8 @@ def make_simple_env(rank, seed=0):
|
||||
def _init():
|
||||
env = ALRBeerpongEnvSimple()
|
||||
|
||||
env = DetPMPWrapper(env,
|
||||
num_dof=3,
|
||||
num_basis=5,
|
||||
width=0.005,
|
||||
policy_type="motor",
|
||||
start_pos=env.start_pos[1::2],
|
||||
duration=3.5,
|
||||
post_traj_time=4.5,
|
||||
dt=env.dt,
|
||||
weights_scale=0.5,
|
||||
zero_start=True,
|
||||
zero_goal=True
|
||||
)
|
||||
env = DetPMPWrapper(env, num_dof=3, num_basis=5, width=0.005, duration=3.5, dt=env.dt, post_traj_time=4.5,
|
||||
policy_type="motor", weights_scale=0.5, zero_start=True, zero_goal=True)
|
||||
|
||||
env.seed(seed + rank)
|
||||
return env
|
||||
|
@ -2,12 +2,12 @@ import os
|
||||
|
||||
import numpy as np
|
||||
from gym import utils
|
||||
from gym.envs.mujoco import mujoco_env
|
||||
from gym.envs.mujoco import MujocoEnv
|
||||
|
||||
import alr_envs.utils.utils as alr_utils
|
||||
|
||||
|
||||
class ALRReacherEnv(mujoco_env.MujocoEnv, utils.EzPickle):
|
||||
class ALRReacherEnv(MujocoEnv, utils.EzPickle):
|
||||
def __init__(self, steps_before_reward=200, n_links=5, balance=False):
|
||||
utils.EzPickle.__init__(**locals())
|
||||
|
||||
@ -31,7 +31,7 @@ class ALRReacherEnv(mujoco_env.MujocoEnv, utils.EzPickle):
|
||||
else:
|
||||
raise ValueError(f"Invalid number of links {n_links}, only 5 or 7 allowed.")
|
||||
|
||||
mujoco_env.MujocoEnv.__init__(self, os.path.join(os.path.dirname(__file__), "assets", file_name), 2)
|
||||
MujocoEnv.__init__(self, os.path.join(os.path.dirname(__file__), "assets", file_name), 2)
|
||||
|
||||
def step(self, a):
|
||||
self._steps += 1
|
||||
|
@ -1,88 +0,0 @@
|
||||
from alr_envs.utils.policies import get_policy_class
|
||||
from mp_lib import det_promp
|
||||
import numpy as np
|
||||
import gym
|
||||
|
||||
|
||||
class DetPMPEnvWrapper(gym.Wrapper):
|
||||
def __init__(self,
|
||||
env,
|
||||
num_dof,
|
||||
num_basis,
|
||||
width,
|
||||
off=0.01,
|
||||
start_pos=None,
|
||||
duration=1,
|
||||
dt=0.01,
|
||||
post_traj_time=0.,
|
||||
policy_type=None,
|
||||
weights_scale=1,
|
||||
zero_start=False,
|
||||
zero_goal=False,
|
||||
):
|
||||
super(DetPMPEnvWrapper, self).__init__(env)
|
||||
self.num_dof = num_dof
|
||||
self.num_basis = num_basis
|
||||
self.dim = num_dof * num_basis
|
||||
self.pmp = det_promp.DeterministicProMP(n_basis=num_basis, n_dof=num_dof, width=width, off=off,
|
||||
zero_start=zero_start, zero_goal=zero_goal)
|
||||
weights = np.zeros(shape=(num_basis, num_dof))
|
||||
self.pmp.set_weights(duration, weights)
|
||||
self.weights_scale = weights_scale
|
||||
|
||||
self.duration = duration
|
||||
self.dt = dt
|
||||
self.post_traj_steps = int(post_traj_time / dt)
|
||||
|
||||
self.start_pos = start_pos
|
||||
self.zero_start = zero_start
|
||||
|
||||
policy_class = get_policy_class(policy_type)
|
||||
self.policy = policy_class(env)
|
||||
|
||||
def __call__(self, params, contexts=None):
|
||||
params = np.atleast_2d(params)
|
||||
rewards = []
|
||||
infos = []
|
||||
for p, c in zip(params, contexts):
|
||||
reward, info = self.rollout(p, c)
|
||||
rewards.append(reward)
|
||||
infos.append(info)
|
||||
|
||||
return np.array(rewards), infos
|
||||
|
||||
def rollout(self, params, context=None, render=False):
|
||||
""" This function generates a trajectory based on a DMP and then does the usual loop over reset and step"""
|
||||
params = np.reshape(params, newshape=(self.num_basis, self.num_dof)) * self.weights_scale
|
||||
self.pmp.set_weights(self.duration, params)
|
||||
t, des_pos, des_vel, des_acc = self.pmp.compute_trajectory(1 / self.dt, 1.)
|
||||
if self.zero_start:
|
||||
des_pos += self.start_pos[None, :]
|
||||
|
||||
if self.post_traj_steps > 0:
|
||||
des_pos = np.vstack([des_pos, np.tile(des_pos[-1, :], [self.post_traj_steps, 1])])
|
||||
des_vel = np.vstack([des_vel, np.zeros(shape=(self.post_traj_steps, self.num_dof))])
|
||||
|
||||
self._trajectory = des_pos
|
||||
self._velocity = des_vel
|
||||
|
||||
rews = []
|
||||
infos = []
|
||||
|
||||
self.env.configure(context)
|
||||
self.env.reset()
|
||||
|
||||
for t, pos_vel in enumerate(zip(des_pos, des_vel)):
|
||||
ac = self.policy.get_action(pos_vel[0], pos_vel[1])
|
||||
obs, rew, done, info = self.env.step(ac)
|
||||
rews.append(rew)
|
||||
infos.append(info)
|
||||
if render:
|
||||
self.env.render(mode="human")
|
||||
if done:
|
||||
break
|
||||
|
||||
reward = np.sum(rews)
|
||||
|
||||
return reward, info
|
||||
|
@ -1,173 +0,0 @@
|
||||
import gym
|
||||
from gym.error import (AlreadyPendingCallError, NoAsyncCallError)
|
||||
from gym.vector.utils import concatenate, create_empty_array
|
||||
from gym.vector.async_vector_env import AsyncState
|
||||
import numpy as np
|
||||
import multiprocessing as mp
|
||||
import sys
|
||||
|
||||
|
||||
def _worker(index, env_fn, pipe, parent_pipe, shared_memory, error_queue):
|
||||
assert shared_memory is None
|
||||
env = env_fn()
|
||||
parent_pipe.close()
|
||||
try:
|
||||
while True:
|
||||
command, data = pipe.recv()
|
||||
if command == 'reset':
|
||||
observation = env.reset()
|
||||
pipe.send((observation, True))
|
||||
elif command == 'step':
|
||||
observation, reward, done, info = env.step(data)
|
||||
if done:
|
||||
observation = env.reset()
|
||||
pipe.send(((observation, reward, done, info), True))
|
||||
elif command == 'rollout':
|
||||
rewards = []
|
||||
infos = []
|
||||
for p, c in zip(*data):
|
||||
reward, info = env.rollout(p, c)
|
||||
rewards.append(reward)
|
||||
infos.append(info)
|
||||
pipe.send(((rewards, infos), (True, ) * len(rewards)))
|
||||
elif command == 'seed':
|
||||
env.seed(data)
|
||||
pipe.send((None, True))
|
||||
elif command == 'close':
|
||||
env.close()
|
||||
pipe.send((None, True))
|
||||
break
|
||||
elif command == 'idle':
|
||||
pipe.send((None, True))
|
||||
elif command == '_check_observation_space':
|
||||
pipe.send((data == env.observation_space, True))
|
||||
else:
|
||||
raise RuntimeError('Received unknown command `{0}`. Must '
|
||||
'be one of {`reset`, `step`, `seed`, `close`, '
|
||||
'`_check_observation_space`}.'.format(command))
|
||||
except (KeyboardInterrupt, Exception):
|
||||
error_queue.put((index,) + sys.exc_info()[:2])
|
||||
pipe.send((None, False))
|
||||
finally:
|
||||
env.close()
|
||||
|
||||
|
||||
class DmpAsyncVectorEnv(gym.vector.AsyncVectorEnv):
|
||||
def __init__(self, env_fns, n_samples, observation_space=None, action_space=None,
|
||||
shared_memory=False, copy=True, context="spawn", daemon=True, worker=_worker):
|
||||
super(DmpAsyncVectorEnv, self).__init__(env_fns,
|
||||
observation_space=observation_space,
|
||||
action_space=action_space,
|
||||
shared_memory=shared_memory,
|
||||
copy=copy,
|
||||
context=context,
|
||||
daemon=daemon,
|
||||
worker=worker)
|
||||
|
||||
# we need to overwrite the number of samples as we may sample more than num_envs
|
||||
self.observations = create_empty_array(self.single_observation_space,
|
||||
n=n_samples,
|
||||
fn=np.zeros)
|
||||
|
||||
def __call__(self, params, contexts=None):
|
||||
return self.rollout(params, contexts)
|
||||
|
||||
def rollout_async(self, params, contexts):
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
params : iterable of samples from `action_space`
|
||||
List of actions.
|
||||
"""
|
||||
self._assert_is_running()
|
||||
if self._state != AsyncState.DEFAULT:
|
||||
raise AlreadyPendingCallError('Calling `rollout_async` while waiting '
|
||||
'for a pending call to `{0}` to complete.'.format(
|
||||
self._state.value), self._state.value)
|
||||
|
||||
params = np.atleast_2d(params)
|
||||
split_params = np.array_split(params, np.minimum(len(params), self.num_envs))
|
||||
if contexts is None:
|
||||
split_contexts = np.array_split([None, ] * len(params), np.minimum(len(params), self.num_envs))
|
||||
else:
|
||||
split_contexts = np.array_split(contexts, np.minimum(len(contexts), self.num_envs))
|
||||
|
||||
assert np.all([len(p) == len(c) for p, c in zip(split_params, split_contexts)])
|
||||
for pipe, param, context in zip(self.parent_pipes, split_params, split_contexts):
|
||||
pipe.send(('rollout', (param, context)))
|
||||
for pipe in self.parent_pipes[len(split_params):]:
|
||||
pipe.send(('idle', None))
|
||||
self._state = AsyncState.WAITING_ROLLOUT
|
||||
|
||||
def rollout_wait(self, timeout=None):
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
timeout : int or float, optional
|
||||
Number of seconds before the call to `step_wait` times out. If
|
||||
`None`, the call to `step_wait` never times out.
|
||||
|
||||
Returns
|
||||
-------
|
||||
observations : sample from `observation_space`
|
||||
A batch of observations from the vectorized environment.
|
||||
|
||||
rewards : `np.ndarray` instance (dtype `np.float_`)
|
||||
A vector of rewards from the vectorized environment.
|
||||
|
||||
dones : `np.ndarray` instance (dtype `np.bool_`)
|
||||
A vector whose entries indicate whether the episode has ended.
|
||||
|
||||
infos : list of dict
|
||||
A list of auxiliary diagnostic information.
|
||||
"""
|
||||
self._assert_is_running()
|
||||
if self._state != AsyncState.WAITING_ROLLOUT:
|
||||
raise NoAsyncCallError('Calling `rollout_wait` without any prior call '
|
||||
'to `rollout_async`.', AsyncState.WAITING_ROLLOUT.value)
|
||||
|
||||
if not self._poll(timeout):
|
||||
self._state = AsyncState.DEFAULT
|
||||
raise mp.TimeoutError('The call to `rollout_wait` has timed out after '
|
||||
'{0} second{1}.'.format(timeout, 's' if timeout > 1 else ''))
|
||||
|
||||
results, successes = zip(*[pipe.recv() for pipe in self.parent_pipes])
|
||||
results = [r for r in results if r is not None]
|
||||
self._raise_if_errors(successes)
|
||||
self._state = AsyncState.DEFAULT
|
||||
|
||||
rewards, infos = [_flatten_list(r) for r in zip(*results)]
|
||||
|
||||
# for now, we ignore the observations and only return the rewards
|
||||
|
||||
# if not self.shared_memory:
|
||||
# self.observations = concatenate(observations_list, self.observations,
|
||||
# self.single_observation_space)
|
||||
|
||||
# return (deepcopy(self.observations) if self.copy else self.observations,
|
||||
# np.array(rewards), np.array(dones, dtype=np.bool_), infos)
|
||||
|
||||
return np.array(rewards), infos
|
||||
|
||||
def rollout(self, actions, contexts):
|
||||
self.rollout_async(actions, contexts)
|
||||
return self.rollout_wait()
|
||||
|
||||
|
||||
def _flatten_obs(obs):
|
||||
assert isinstance(obs, (list, tuple))
|
||||
assert len(obs) > 0
|
||||
|
||||
if isinstance(obs[0], dict):
|
||||
keys = obs[0].keys()
|
||||
return {k: np.stack([o[k] for o in obs]) for k in keys}
|
||||
else:
|
||||
return np.stack(obs)
|
||||
|
||||
|
||||
def _flatten_list(l):
|
||||
assert isinstance(l, (list, tuple))
|
||||
assert len(l) > 0
|
||||
assert all([len(l_) > 0 for l_ in l])
|
||||
|
||||
return [l__ for l_ in l for l__ in l_]
|
@ -1,125 +0,0 @@
|
||||
from alr_envs.utils.policies import get_policy_class
|
||||
from mp_lib.phase import ExpDecayPhaseGenerator
|
||||
from mp_lib.basis import DMPBasisGenerator
|
||||
from mp_lib import dmps
|
||||
import numpy as np
|
||||
import gym
|
||||
|
||||
|
||||
class DmpEnvWrapper(gym.Wrapper):
|
||||
def __init__(self,
|
||||
env,
|
||||
num_dof,
|
||||
num_basis,
|
||||
start_pos=None,
|
||||
final_pos=None,
|
||||
duration=1,
|
||||
dt=0.01,
|
||||
alpha_phase=2,
|
||||
bandwidth_factor=3,
|
||||
learn_goal=False,
|
||||
post_traj_time=0.,
|
||||
policy_type=None,
|
||||
weights_scale=1.,
|
||||
goal_scale=1.,
|
||||
):
|
||||
super(DmpEnvWrapper, self).__init__(env)
|
||||
self.num_dof = num_dof
|
||||
self.num_basis = num_basis
|
||||
self.dim = num_dof * num_basis
|
||||
if learn_goal:
|
||||
self.dim += num_dof
|
||||
self.learn_goal = learn_goal
|
||||
self.duration = duration # seconds
|
||||
time_steps = int(duration / dt)
|
||||
self.t = np.linspace(0, duration, time_steps)
|
||||
self.post_traj_steps = int(post_traj_time / dt)
|
||||
|
||||
phase_generator = ExpDecayPhaseGenerator(alpha_phase=alpha_phase, duration=duration)
|
||||
basis_generator = DMPBasisGenerator(phase_generator,
|
||||
duration=duration,
|
||||
num_basis=self.num_basis,
|
||||
basis_bandwidth_factor=bandwidth_factor)
|
||||
|
||||
self.dmp = dmps.DMP(num_dof=num_dof,
|
||||
basis_generator=basis_generator,
|
||||
phase_generator=phase_generator,
|
||||
num_time_steps=time_steps,
|
||||
dt=dt
|
||||
)
|
||||
|
||||
self.dmp.dmp_start_pos = start_pos.reshape((1, num_dof))
|
||||
|
||||
dmp_weights = np.zeros((num_basis, num_dof))
|
||||
if learn_goal:
|
||||
dmp_goal_pos = np.zeros(num_dof)
|
||||
else:
|
||||
dmp_goal_pos = final_pos
|
||||
|
||||
self.dmp.set_weights(dmp_weights, dmp_goal_pos)
|
||||
self.weights_scale = weights_scale
|
||||
self.goal_scale = goal_scale
|
||||
|
||||
policy_class = get_policy_class(policy_type)
|
||||
self.policy = policy_class(env)
|
||||
|
||||
def __call__(self, params, contexts=None):
|
||||
params = np.atleast_2d(params)
|
||||
rewards = []
|
||||
infos = []
|
||||
for p, c in zip(params, contexts):
|
||||
reward, info = self.rollout(p, c)
|
||||
rewards.append(reward)
|
||||
infos.append(info)
|
||||
|
||||
return np.array(rewards), infos
|
||||
|
||||
def goal_and_weights(self, params):
|
||||
if len(params.shape) > 1:
|
||||
assert params.shape[1] == self.dim
|
||||
else:
|
||||
assert len(params) == self.dim
|
||||
params = np.reshape(params, [1, self.dim])
|
||||
|
||||
if self.learn_goal:
|
||||
goal_pos = params[0, -self.num_dof:]
|
||||
weight_matrix = np.reshape(params[:, :-self.num_dof], [self.num_basis, self.num_dof])
|
||||
else:
|
||||
goal_pos = self.dmp.dmp_goal_pos.flatten()
|
||||
assert goal_pos is not None
|
||||
weight_matrix = np.reshape(params, [self.num_basis, self.num_dof])
|
||||
|
||||
return goal_pos * self.goal_scale, weight_matrix * self.weights_scale
|
||||
|
||||
def rollout(self, params, context=None, render=False):
|
||||
""" This function generates a trajectory based on a DMP and then does the usual loop over reset and step"""
|
||||
goal_pos, weight_matrix = self.goal_and_weights(params)
|
||||
self.dmp.set_weights(weight_matrix, goal_pos)
|
||||
trajectory, velocity = self.dmp.reference_trajectory(self.t)
|
||||
|
||||
if self.post_traj_steps > 0:
|
||||
trajectory = np.vstack([trajectory, np.tile(trajectory[-1, :], [self.post_traj_steps, 1])])
|
||||
velocity = np.vstack([velocity, np.zeros(shape=(self.post_traj_steps, self.num_dof))])
|
||||
|
||||
self._trajectory = trajectory
|
||||
self._velocity = velocity
|
||||
|
||||
rews = []
|
||||
infos = []
|
||||
|
||||
self.env.configure(context)
|
||||
self.env.reset()
|
||||
|
||||
for t, pos_vel in enumerate(zip(trajectory, velocity)):
|
||||
ac = self.policy.get_action(pos_vel[0], pos_vel[1])
|
||||
obs, rew, done, info = self.env.step(ac)
|
||||
rews.append(rew)
|
||||
infos.append(info)
|
||||
if render:
|
||||
self.env.render(mode="human")
|
||||
if done:
|
||||
break
|
||||
|
||||
reward = np.sum(rews)
|
||||
|
||||
return reward, info
|
@ -1,28 +0,0 @@
|
||||
from alr_envs.utils.legacy.utils import make_holereacher_env
|
||||
import numpy as np
|
||||
|
||||
if __name__ == "__main__":
|
||||
n_samples = 1
|
||||
n_cpus = 4
|
||||
dim = 30
|
||||
|
||||
# env = DmpAsyncVectorEnv([make_viapointreacher_env(i) for i in range(n_cpus)],
|
||||
# n_samples=n_samples)
|
||||
|
||||
test_env = make_holereacher_env(0)()
|
||||
|
||||
# params = np.random.randn(n_samples, dim)
|
||||
params = np.array([[1.386102, -3.29980525, 4.70402733, 1.3966668, 0.73774902,
|
||||
3.14676681, -4.98644416, 6.20303193, 1.30502127, -0.09330522,
|
||||
7.62656797, -5.76893033, 3.4706711, -0.6944142, -3.33442788,
|
||||
12.31421548, -0.72760271, -6.9090723, 7.02903814, -8.7236836,
|
||||
1.4805914, 0.53185824, -5.46626893, 0.69692163, 13.58472666,
|
||||
0.77199316, 2.02906724, -3.0203244, -1.00533159, -0.57417351]])
|
||||
|
||||
# params = np.hstack([50 * np.random.randn(n_samples, 25), np.tile(np.array([np.pi/2, -np.pi/4, -np.pi/4, -np.pi/4, -np.pi/4]), [n_samples, 1])])
|
||||
|
||||
rew, info = test_env.rollout(params, render=True)
|
||||
print(rew)
|
||||
|
||||
# out = env(params)
|
||||
# print(out)
|
@ -1,28 +0,0 @@
|
||||
from alr_envs.mujoco.ball_in_a_cup.utils import make_simple_dmp_env
|
||||
import numpy as np
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
dim = 15
|
||||
n_cpus = 4
|
||||
|
||||
# n_samples = 10
|
||||
#
|
||||
# vec_env = DmpAsyncVectorEnv([make_simple_env(i) for i in range(n_cpus)],
|
||||
# n_samples=n_samples)
|
||||
#
|
||||
# params = np.tile(1 * np.random.randn(n_samples, dim), (10, 1))
|
||||
#
|
||||
# rewards, infos = vec_env(params)
|
||||
# print(rewards)
|
||||
#
|
||||
non_vec_env = make_simple_dmp_env(0, 0)()
|
||||
|
||||
# params = 0.5 * np.random.randn(dim)
|
||||
params = np.array([-2.63357598, -1.04950296, -0.44330737, 0.52950017, 4.29247739,
|
||||
4.52473661, -0.05685977, -0.76796851, 3.71540499, 1.22631059,
|
||||
2.20412438, 3.91588129, -0.12652723, -3.0788211 , 0.56204464])
|
||||
|
||||
out2 = non_vec_env.rollout(params, render=True )
|
||||
|
||||
print(out2)
|
@ -1,156 +0,0 @@
|
||||
import alr_envs.classic_control.hole_reacher as hr
|
||||
import alr_envs.classic_control.viapoint_reacher as vpr
|
||||
from alr_envs.utils.wrapper.dmp_wrapper import DmpWrapper
|
||||
from alr_envs.utils.wrapper.detpmp_wrapper import DetPMPWrapper
|
||||
import numpy as np
|
||||
|
||||
|
||||
def make_viapointreacher_env(rank, seed=0):
|
||||
"""
|
||||
Utility function for multiprocessed env.
|
||||
|
||||
:param env_id: (str) the environment ID
|
||||
:param num_env: (int) the number of environments you wish to have in subprocesses
|
||||
:param seed: (int) the initial seed for RNG
|
||||
:param rank: (int) index of the subprocess
|
||||
:returns a function that generates an environment
|
||||
"""
|
||||
|
||||
def _init():
|
||||
_env = vpr.ViaPointReacher(n_links=5,
|
||||
allow_self_collision=False,
|
||||
collision_penalty=1000)
|
||||
|
||||
_env = DmpWrapper(_env,
|
||||
num_dof=5,
|
||||
num_basis=5,
|
||||
duration=2,
|
||||
alpha_phase=2.5,
|
||||
dt=_env.dt,
|
||||
start_pos=_env.start_pos,
|
||||
learn_goal=False,
|
||||
policy_type="velocity",
|
||||
weights_scale=50)
|
||||
_env.seed(seed + rank)
|
||||
return _env
|
||||
|
||||
return _init
|
||||
|
||||
|
||||
def make_holereacher_env(rank, seed=0):
|
||||
"""
|
||||
Utility function for multiprocessed env.
|
||||
|
||||
:param env_id: (str) the environment ID
|
||||
:param num_env: (int) the number of environments you wish to have in subprocesses
|
||||
:param seed: (int) the initial seed for RNG
|
||||
:param rank: (int) index of the subprocess
|
||||
:returns a function that generates an environment
|
||||
"""
|
||||
|
||||
def _init():
|
||||
_env = hr.HoleReacher(n_links=5,
|
||||
allow_self_collision=False,
|
||||
allow_wall_collision=False,
|
||||
hole_width=0.25,
|
||||
hole_depth=1,
|
||||
hole_x=2,
|
||||
collision_penalty=100)
|
||||
|
||||
_env = DmpWrapper(_env,
|
||||
num_dof=5,
|
||||
num_basis=5,
|
||||
duration=2,
|
||||
bandwidth_factor=2,
|
||||
dt=_env.dt,
|
||||
learn_goal=True,
|
||||
alpha_phase=2,
|
||||
start_pos=_env.start_pos,
|
||||
policy_type="velocity",
|
||||
weights_scale=50,
|
||||
goal_scale=0.1
|
||||
)
|
||||
|
||||
_env.seed(seed + rank)
|
||||
return _env
|
||||
|
||||
return _init
|
||||
|
||||
|
||||
def make_holereacher_fix_goal_env(rank, seed=0):
|
||||
"""
|
||||
Utility function for multiprocessed env.
|
||||
|
||||
:param env_id: (str) the environment ID
|
||||
:param num_env: (int) the number of environments you wish to have in subprocesses
|
||||
:param seed: (int) the initial seed for RNG
|
||||
:param rank: (int) index of the subprocess
|
||||
:returns a function that generates an environment
|
||||
"""
|
||||
|
||||
def _init():
|
||||
_env = hr.HoleReacher(n_links=5,
|
||||
allow_self_collision=False,
|
||||
allow_wall_collision=False,
|
||||
hole_width=0.15,
|
||||
hole_depth=1,
|
||||
hole_x=1,
|
||||
collision_penalty=100)
|
||||
|
||||
_env = DmpWrapper(_env,
|
||||
num_dof=5,
|
||||
num_basis=5,
|
||||
duration=2,
|
||||
dt=_env.dt,
|
||||
learn_goal=False,
|
||||
final_pos=np.array([2.02669572, -1.25966385, -1.51618198, -0.80946476, 0.02012344]),
|
||||
alpha_phase=2,
|
||||
start_pos=_env.start_pos,
|
||||
policy_type="velocity",
|
||||
weights_scale=50,
|
||||
goal_scale=1
|
||||
)
|
||||
|
||||
_env.seed(seed + rank)
|
||||
return _env
|
||||
|
||||
return _init
|
||||
|
||||
|
||||
def make_holereacher_env_pmp(rank, seed=0):
|
||||
"""
|
||||
Utility function for multiprocessed env.
|
||||
|
||||
:param env_id: (str) the environment ID
|
||||
:param num_env: (int) the number of environments you wish to have in subprocesses
|
||||
:param seed: (int) the initial seed for RNG
|
||||
:param rank: (int) index of the subprocess
|
||||
:returns a function that generates an environment
|
||||
"""
|
||||
|
||||
def _init():
|
||||
_env = hr.HoleReacher(n_links=5,
|
||||
allow_self_collision=False,
|
||||
allow_wall_collision=False,
|
||||
hole_width=0.15,
|
||||
hole_depth=1,
|
||||
hole_x=1,
|
||||
collision_penalty=1000)
|
||||
|
||||
_env = DetPMPWrapper(_env,
|
||||
num_dof=5,
|
||||
num_basis=5,
|
||||
width=0.02,
|
||||
policy_type="velocity",
|
||||
start_pos=_env.start_pos,
|
||||
duration=2,
|
||||
post_traj_time=0,
|
||||
dt=_env.dt,
|
||||
weights_scale=0.2,
|
||||
zero_start=True,
|
||||
zero_goal=False
|
||||
)
|
||||
_env.seed(seed + rank)
|
||||
return _env
|
||||
|
||||
return _init
|
@ -1,5 +1,5 @@
|
||||
from alr_envs.utils.wrapper.dmp_wrapper import DmpWrapper
|
||||
from alr_envs.utils.wrapper.detpmp_wrapper import DetPMPWrapper
|
||||
from alr_envs.utils.mps.dmp_wrapper import DmpWrapper
|
||||
from alr_envs.utils.mps.detpmp_wrapper import DetPMPWrapper
|
||||
import gym
|
||||
from gym.vector.utils import write_to_shared_memory
|
||||
import sys
|
||||
|
@ -4,8 +4,8 @@ import numpy as np
|
||||
from _collections import defaultdict
|
||||
|
||||
|
||||
def make_env(env_id, rank, seed=0):
|
||||
env = gym.make(env_id)
|
||||
def make_env(env_id, rank, seed=0, **env_kwargs):
|
||||
env = gym.make(env_id, **env_kwargs)
|
||||
env.seed(seed + rank)
|
||||
return lambda: env
|
||||
|
||||
@ -45,9 +45,9 @@ class AlrMpEnvSampler:
|
||||
An asynchronous sampler for non contextual MPWrapper environments. A sampler object can be called with a set of
|
||||
parameters and returns the corresponding final obs, rewards, dones and info dicts.
|
||||
"""
|
||||
def __init__(self, env_id, num_envs, seed=0):
|
||||
def __init__(self, env_id, num_envs, seed=0, **env_kwargs):
|
||||
self.num_envs = num_envs
|
||||
self.env = AsyncVectorEnv([make_env(env_id, seed, i) for i in range(num_envs)])
|
||||
self.env = AsyncVectorEnv([make_env(env_id, seed, i, **env_kwargs) for i in range(num_envs)])
|
||||
|
||||
def __call__(self, params):
|
||||
params = np.atleast_2d(params)
|
||||
@ -56,6 +56,7 @@ class AlrMpEnvSampler:
|
||||
|
||||
vals = defaultdict(list)
|
||||
for p in split_params:
|
||||
self.env.reset()
|
||||
obs, reward, done, info = self.env.step(p)
|
||||
vals['obs'].append(obs)
|
||||
vals['reward'].append(reward)
|
||||
@ -67,6 +68,37 @@ class AlrMpEnvSampler:
|
||||
_flatten_list(vals['done'])[:n_samples], _flatten_list(vals['info'])[:n_samples]
|
||||
|
||||
|
||||
class AlrContextualMpEnvSampler:
|
||||
"""
|
||||
An asynchronous sampler for contextual MPWrapper environments. A sampler object can be called with a set of
|
||||
parameters and returns the corresponding final obs, rewards, dones and info dicts.
|
||||
"""
|
||||
def __init__(self, env_id, num_envs, seed=0, **env_kwargs):
|
||||
self.num_envs = num_envs
|
||||
self.env = AsyncVectorEnv([make_env(env_id, seed, i, **env_kwargs) for i in range(num_envs)])
|
||||
|
||||
def __call__(self, dist, n_samples):
|
||||
|
||||
repeat = int(np.ceil(n_samples / self.env.num_envs))
|
||||
vals = defaultdict(list)
|
||||
for i in range(repeat):
|
||||
new_contexts = self.env.reset()
|
||||
vals['new_contexts'].append(new_contexts)
|
||||
new_samples, new_contexts = dist.sample(new_contexts)
|
||||
vals['new_samples'].append(new_samples)
|
||||
|
||||
obs, reward, done, info = self.env.step(new_samples)
|
||||
vals['obs'].append(obs)
|
||||
vals['reward'].append(reward)
|
||||
vals['done'].append(done)
|
||||
vals['info'].append(info)
|
||||
|
||||
# do not return values above threshold
|
||||
return np.vstack(vals['new_samples'])[:n_samples], np.vstack(vals['new_contexts'])[:n_samples], \
|
||||
np.vstack(vals['obs'])[:n_samples], np.hstack(vals['reward'])[:n_samples], \
|
||||
_flatten_list(vals['done'])[:n_samples], _flatten_list(vals['info'])[:n_samples]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
env_name = "alr_envs:ALRBallInACupSimpleDMP-v0"
|
||||
n_cpu = 8
|
||||
|
@ -2,26 +2,27 @@ import gym
|
||||
import numpy as np
|
||||
from mp_lib import det_promp
|
||||
|
||||
from alr_envs.utils.wrapper.mp_wrapper import MPWrapper
|
||||
from alr_envs.utils.mps.mp_environments import MPEnv
|
||||
from alr_envs.utils.mps.mp_wrapper import MPWrapper
|
||||
|
||||
|
||||
class DetPMPWrapper(MPWrapper):
|
||||
def __init__(self, env, num_dof, num_basis, width, start_pos=None, duration=1, dt=0.01, post_traj_time=0.,
|
||||
policy_type=None, weights_scale=1, zero_start=False, zero_goal=False, **mp_kwargs):
|
||||
# self.duration = duration # seconds
|
||||
def __init__(self, env: MPEnv, num_dof: int, num_basis: int, width: int, duration: int = 1, dt: float = 0.01,
|
||||
post_traj_time: float = 0., policy_type: str = None, weights_scale: float = 1.,
|
||||
zero_start: bool = False, zero_goal: bool = False, **mp_kwargs):
|
||||
self.duration = duration # seconds
|
||||
|
||||
super().__init__(env, num_dof, duration, dt, post_traj_time, policy_type, weights_scale,
|
||||
num_basis=num_basis, width=width, start_pos=start_pos, zero_start=zero_start,
|
||||
zero_goal=zero_goal)
|
||||
super().__init__(env, num_dof, dt, duration, post_traj_time, policy_type, weights_scale, num_basis=num_basis,
|
||||
width=width, zero_start=zero_start, zero_goal=zero_goal, **mp_kwargs)
|
||||
|
||||
self.dt = dt
|
||||
|
||||
action_bounds = np.inf * np.ones((self.mp.n_basis * self.mp.n_dof))
|
||||
self.action_space = gym.spaces.Box(low=-action_bounds, high=action_bounds, dtype=np.float32)
|
||||
|
||||
self.start_pos = start_pos
|
||||
self.dt = dt
|
||||
|
||||
def initialize_mp(self, num_dof: int, duration: int, dt: float, num_basis: int = 5, width: float = None,
|
||||
start_pos: np.ndarray = None, zero_start: bool = False, zero_goal: bool = False):
|
||||
zero_start: bool = False, zero_goal: bool = False):
|
||||
pmp = det_promp.DeterministicProMP(n_basis=num_basis, n_dof=num_dof, width=width, off=0.01,
|
||||
zero_start=zero_start, zero_goal=zero_goal)
|
||||
|
@ -1,17 +1,18 @@
|
||||
from mp_lib.phase import ExpDecayPhaseGenerator
|
||||
from mp_lib.basis import DMPBasisGenerator
|
||||
from mp_lib import dmps
|
||||
import numpy as np
|
||||
import gym
|
||||
import numpy as np
|
||||
from mp_lib import dmps
|
||||
from mp_lib.basis import DMPBasisGenerator
|
||||
from mp_lib.phase import ExpDecayPhaseGenerator
|
||||
|
||||
from alr_envs.utils.wrapper.mp_wrapper import MPWrapper
|
||||
from alr_envs.utils.mps.mp_environments import MPEnv
|
||||
from alr_envs.utils.mps.mp_wrapper import MPWrapper
|
||||
|
||||
|
||||
class DmpWrapper(MPWrapper):
|
||||
|
||||
def __init__(self, env: gym.Env, num_dof: int, num_basis: int, start_pos: np.ndarray = None,
|
||||
final_pos: np.ndarray = None, duration: int = 1, alpha_phase: float = 2., dt: float = None,
|
||||
learn_goal: bool = False, return_to_start: bool = False, post_traj_time: float = 0.,
|
||||
def __init__(self, env: MPEnv, num_dof: int, num_basis: int,
|
||||
duration: int = 1, alpha_phase: float = 2., dt: float = None,
|
||||
learn_goal: bool = False, post_traj_time: float = 0.,
|
||||
weights_scale: float = 1., goal_scale: float = 1., bandwidth_factor: float = 3.,
|
||||
policy_type: str = None, render_mode: str = None):
|
||||
|
||||
@ -21,8 +22,6 @@ class DmpWrapper(MPWrapper):
|
||||
env:
|
||||
num_dof:
|
||||
num_basis:
|
||||
start_pos:
|
||||
final_pos:
|
||||
duration:
|
||||
alpha_phase:
|
||||
dt:
|
||||
@ -35,25 +34,17 @@ class DmpWrapper(MPWrapper):
|
||||
self.learn_goal = learn_goal
|
||||
dt = env.dt if hasattr(env, "dt") else dt
|
||||
assert dt is not None
|
||||
start_pos = start_pos if start_pos is not None else env.start_pos if hasattr(env, "start_pos") else None
|
||||
assert start_pos is not None
|
||||
if learn_goal:
|
||||
final_pos = np.zeros_like(start_pos) # arbitrary, will be learned
|
||||
else:
|
||||
final_pos = final_pos if final_pos is not None else start_pos if return_to_start else None
|
||||
assert final_pos is not None
|
||||
self.t = np.linspace(0, duration, int(duration / dt))
|
||||
self.goal_scale = goal_scale
|
||||
|
||||
super().__init__(env, num_dof, duration, dt, post_traj_time, policy_type, weights_scale, render_mode,
|
||||
num_basis=num_basis, start_pos=start_pos, final_pos=final_pos, alpha_phase=alpha_phase,
|
||||
bandwidth_factor=bandwidth_factor)
|
||||
super().__init__(env, num_dof, dt, duration, post_traj_time, policy_type, weights_scale, render_mode,
|
||||
num_basis=num_basis, alpha_phase=alpha_phase, bandwidth_factor=bandwidth_factor)
|
||||
|
||||
action_bounds = np.inf * np.ones((np.prod(self.mp.dmp_weights.shape) + (num_dof if learn_goal else 0)))
|
||||
self.action_space = gym.spaces.Box(low=-action_bounds, high=action_bounds, dtype=np.float32)
|
||||
|
||||
def initialize_mp(self, num_dof: int, duration: int, dt: float, num_basis: int = 5, start_pos: np.ndarray = None,
|
||||
final_pos: np.ndarray = None, alpha_phase: float = 2., bandwidth_factor: float = 3.):
|
||||
def initialize_mp(self, num_dof: int, duration: int, dt: float, num_basis: int = 5, alpha_phase: float = 2.,
|
||||
bandwidth_factor: int = 3):
|
||||
|
||||
phase_generator = ExpDecayPhaseGenerator(alpha_phase=alpha_phase, duration=duration)
|
||||
basis_generator = DMPBasisGenerator(phase_generator, duration=duration, num_basis=num_basis,
|
||||
@ -62,12 +53,6 @@ class DmpWrapper(MPWrapper):
|
||||
dmp = dmps.DMP(num_dof=num_dof, basis_generator=basis_generator, phase_generator=phase_generator,
|
||||
num_time_steps=int(duration / dt), dt=dt)
|
||||
|
||||
dmp.dmp_start_pos = start_pos.reshape((1, num_dof))
|
||||
|
||||
weights = np.zeros((num_basis, num_dof))
|
||||
goal_pos = np.zeros(num_dof) if self.learn_goal else final_pos
|
||||
|
||||
dmp.set_weights(weights, goal_pos)
|
||||
return dmp
|
||||
|
||||
def goal_and_weights(self, params):
|
||||
@ -77,16 +62,15 @@ class DmpWrapper(MPWrapper):
|
||||
if self.learn_goal:
|
||||
goal_pos = params[0, -self.mp.num_dimensions:] # [num_dof]
|
||||
params = params[:, :-self.mp.num_dimensions] # [1,num_dof]
|
||||
# weight_matrix = np.reshape(params[:, :-self.num_dof], [self.num_basis, self.num_dof])
|
||||
else:
|
||||
goal_pos = self.mp.dmp_goal_pos.flatten()
|
||||
goal_pos = self.env.goal_pos
|
||||
assert goal_pos is not None
|
||||
# weight_matrix = np.reshape(params, [self.num_basis, self.num_dof])
|
||||
|
||||
weight_matrix = np.reshape(params, self.mp.dmp_weights.shape)
|
||||
weight_matrix = np.reshape(params, self.mp.dmp_weights.shape) # [num_basis, num_dof]
|
||||
return goal_pos * self.goal_scale, weight_matrix * self.weights_scale
|
||||
|
||||
def mp_rollout(self, action):
|
||||
self.mp.dmp_start_pos = self.env.start_pos
|
||||
goal_pos, weight_matrix = self.goal_and_weights(action)
|
||||
self.mp.set_weights(weight_matrix, goal_pos)
|
||||
return self.mp.reference_trajectory(self.t)
|
33
alr_envs/utils/mps/mp_environments.py
Normal file
33
alr_envs/utils/mps/mp_environments.py
Normal file
@ -0,0 +1,33 @@
|
||||
from abc import abstractmethod
|
||||
from typing import Union
|
||||
|
||||
import gym
|
||||
import numpy as np
|
||||
|
||||
|
||||
class MPEnv(gym.Env):
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def active_obs(self):
|
||||
"""Returns boolean mask for each observation entry
|
||||
whether the observation is returned for the contextual case or not.
|
||||
This effectively allows to filter unwanted or unnecessary observations from the full step-based case.
|
||||
"""
|
||||
return np.ones(self.observation_space.shape, dtype=bool)
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def start_pos(self) -> Union[float, int, np.ndarray]:
|
||||
"""
|
||||
Returns the starting position of the joints
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
@property
|
||||
def goal_pos(self) -> Union[float, int, np.ndarray]:
|
||||
"""
|
||||
Returns the current final position of the joints for the MP.
|
||||
By default this returns the starting position.
|
||||
"""
|
||||
return self.start_pos
|
@ -1,32 +1,24 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from collections import defaultdict
|
||||
|
||||
import gym
|
||||
import numpy as np
|
||||
|
||||
from alr_envs.utils.mps.mp_environments import MPEnv
|
||||
from alr_envs.utils.policies import get_policy_class
|
||||
|
||||
|
||||
class MPWrapper(gym.Wrapper, ABC):
|
||||
|
||||
def __init__(self,
|
||||
env: gym.Env,
|
||||
num_dof: int,
|
||||
duration: int = 1,
|
||||
dt: float = None,
|
||||
post_traj_time: float = 0.,
|
||||
policy_type: str = None,
|
||||
weights_scale: float = 1.,
|
||||
render_mode: str = None,
|
||||
**mp_kwargs
|
||||
):
|
||||
def __init__(self, env: MPEnv, num_dof: int, dt: float, duration: int = 1, post_traj_time: float = 0.,
|
||||
policy_type: str = None, weights_scale: float = 1., render_mode: str = None, **mp_kwargs):
|
||||
super().__init__(env)
|
||||
|
||||
# self.num_dof = num_dof
|
||||
# self.num_basis = num_basis
|
||||
# self.duration = duration # seconds
|
||||
# adjust observation space to reduce version
|
||||
obs_sp = self.env.observation_space
|
||||
self.observation_space = gym.spaces.Box(low=obs_sp.low[self.env.active_obs],
|
||||
high=obs_sp.high[self.env.active_obs],
|
||||
dtype=obs_sp.dtype)
|
||||
|
||||
# dt = env.dt if hasattr(env, "dt") else dt
|
||||
assert dt is not None # this should never happen as MPWrapper is a base class
|
||||
self.post_traj_steps = int(post_traj_time / dt)
|
||||
|
||||
@ -40,8 +32,11 @@ class MPWrapper(gym.Wrapper, ABC):
|
||||
self.render_mode = render_mode
|
||||
self.render_kwargs = {}
|
||||
|
||||
# TODO: not yet final
|
||||
# TODO: @Max I think this should not be in this class, this functionality should be part of your sampler.
|
||||
def __call__(self, params, contexts=None):
|
||||
"""
|
||||
Can be used to provide a batch of parameter sets
|
||||
"""
|
||||
params = np.atleast_2d(params)
|
||||
obs = []
|
||||
rewards = []
|
||||
@ -61,6 +56,9 @@ class MPWrapper(gym.Wrapper, ABC):
|
||||
def configure(self, context):
|
||||
self.env.configure(context)
|
||||
|
||||
def reset(self):
|
||||
return self.env.reset()[self.env.active_obs]
|
||||
|
||||
def step(self, action: np.ndarray):
|
||||
""" This function generates a trajectory based on a DMP and then does the usual loop over reset and step"""
|
||||
trajectory, velocity = self.mp_rollout(action)
|
||||
@ -73,14 +71,9 @@ class MPWrapper(gym.Wrapper, ABC):
|
||||
# self._velocity = velocity
|
||||
|
||||
rewards = 0
|
||||
# infos = defaultdict(list)
|
||||
|
||||
# TODO: @Max Why do we need this configure, states should be part of the model
|
||||
# TODO: Ask Onur if the context distribution needs to be outside the environment
|
||||
# TODO: For now create a new env with each context
|
||||
# self.env.configure(context)
|
||||
obs = self.env.reset()
|
||||
info = {}
|
||||
# create random obs as the reset function is called externally
|
||||
obs = self.env.observation_space.sample()
|
||||
|
||||
for t, pos_vel in enumerate(zip(trajectory, velocity)):
|
||||
ac = self.policy.get_action(pos_vel[0], pos_vel[1])
|
||||
@ -94,7 +87,7 @@ class MPWrapper(gym.Wrapper, ABC):
|
||||
break
|
||||
|
||||
done = True
|
||||
return obs, rewards, done, info
|
||||
return obs[self.env.active_obs], rewards, done, info
|
||||
|
||||
def render(self, mode='human', **kwargs):
|
||||
"""Only set render options here, such that they can be used during the rollout.
|
||||
@ -102,18 +95,6 @@ class MPWrapper(gym.Wrapper, ABC):
|
||||
self.render_mode = mode
|
||||
self.render_kwargs = kwargs
|
||||
|
||||
# def __call__(self, actions):
|
||||
# return self.step(actions)
|
||||
# params = np.atleast_2d(params)
|
||||
# rewards = []
|
||||
# infos = []
|
||||
# for p, c in zip(params, contexts):
|
||||
# reward, info = self.rollout(p, c)
|
||||
# rewards.append(reward)
|
||||
# infos.append(info)
|
||||
#
|
||||
# return np.array(rewards), infos
|
||||
|
||||
@abstractmethod
|
||||
def mp_rollout(self, action):
|
||||
"""
|
10
example.py
10
example.py
@ -46,7 +46,7 @@ def example_dmp():
|
||||
obs = env.reset()
|
||||
|
||||
|
||||
def example_async(n_cpu=4, seed=int('533D', 16)):
|
||||
def example_async(env_id="alr_envs:HoleReacherDMP-v0", n_cpu=4, seed=int('533D', 16)):
|
||||
def make_env(env_id, seed, rank):
|
||||
env = gym.make(env_id)
|
||||
env.seed(seed + rank)
|
||||
@ -73,7 +73,7 @@ def example_async(n_cpu=4, seed=int('533D', 16)):
|
||||
# do not return values above threshold
|
||||
return (*map(lambda v: np.stack(v)[:n_samples], vals.values()),)
|
||||
|
||||
envs = gym.vector.AsyncVectorEnv([make_env("alr_envs:HoleReacherDMP-v0", seed, i) for i in range(n_cpu)])
|
||||
envs = gym.vector.AsyncVectorEnv([make_env(env_id, seed, i) for i in range(n_cpu)])
|
||||
|
||||
obs = envs.reset()
|
||||
print(sample(envs, 16))
|
||||
@ -82,6 +82,6 @@ def example_async(n_cpu=4, seed=int('533D', 16)):
|
||||
if __name__ == '__main__':
|
||||
# example_mujoco()
|
||||
# example_dmp()
|
||||
# example_async()
|
||||
env = gym.make("alr_envs:HoleReacherDMP-v0", context=0.1)
|
||||
print()
|
||||
example_async("alr_envs:LongSimpleReacherDMP-v0", 4)
|
||||
# env = gym.make("alr_envs:HoleReacherDMP-v0", context=0.1)
|
||||
# env = gym.make("alr_envs:HoleReacherDMP-v1")
|
||||
|
Loading…
Reference in New Issue
Block a user