added rendering to DMC envs and updated examples

This commit is contained in:
ottofabian 2021-06-30 15:00:36 +02:00
parent 7c04b25eec
commit eae149f838
8 changed files with 116 additions and 121 deletions

View File

@ -6,19 +6,24 @@ def example_dmc(env_name="fish-swim", seed=1, iterations=1000):
env = make_env(env_name, seed)
rewards = 0
obs = env.reset()
print(obs)
print("observation shape:", env.observation_space.shape)
print("action shape:", env.action_space.shape)
# number of samples(multiple environment steps)
for i in range(10):
for i in range(iterations):
ac = env.action_space.sample()
obs, reward, done, info = env.step(ac)
rewards += reward
env.render("human")
if done:
print(rewards)
print(env_name, rewards)
rewards = 0
obs = env.reset()
env.close()
def example_custom_dmc_and_mp(seed=1):
"""
@ -50,12 +55,13 @@ def example_custom_dmc_and_mp(seed=1):
"weights_scale": 50,
"goal_scale": 0.1
}
env = make_dmp_env(base_env, wrappers=wrappers, seed=seed, **mp_kwargs)
env = make_dmp_env(base_env, wrappers=wrappers, seed=seed, mp_kwargs=mp_kwargs)
# OR for a deterministic ProMP:
# env = make_detpmp_env(base_env, wrappers=wrappers, seed=seed, **mp_args)
rewards = 0
obs = env.reset()
env.render("human")
# number of samples/full trajectories (multiple environment steps)
for i in range(10):
@ -64,17 +70,26 @@ def example_custom_dmc_and_mp(seed=1):
rewards += reward
if done:
print(rewards)
print(base_env, rewards)
rewards = 0
obs = env.reset()
env.close()
if __name__ == '__main__':
# Disclaimer: DMC environments require the seed to be specified in the beginning.
# Adjusting it afterwards with env.seed() is not recommended as it does not affect the underlying physics.
# Standard DMC task
example_dmc("fish_swim", seed=10, iterations=1000)
# For rendering DMC
# export MUJOCO_GL="osmesa"
# Standard DMC Suite tasks
example_dmc("fish-swim", seed=10, iterations=100)
# Manipulation tasks
# The vision versions are currently not integrated
example_dmc("manipulation-reach_site_features", seed=10, iterations=100)
# Gym + DMC hybrid task provided in the MP framework
example_dmc("dmc_ball_in_cup_dmp-v0", seed=10, iterations=10)

View File

@ -8,7 +8,7 @@ from alr_envs.utils.make_env_helpers import make_env
from alr_envs.utils.mp_env_async_sampler import AlrContextualMpEnvSampler, AlrMpEnvSampler, DummyDist
def example_general(env_id='alr_envs:ALRReacher-v0', seed=1):
def example_general(env_id: str, seed=1, iterations=1000):
"""
Example for running any env in the step based setting.
This also includes DMC environments when leveraging our custom make_env function.
@ -17,16 +17,16 @@ def example_general(env_id='alr_envs:ALRReacher-v0', seed=1):
env = make_env(env_id, seed)
rewards = 0
obs = env.reset()
print("Observation shape: ", obs.shape)
print("Observation shape: ", env.observation_space.shape)
print("Action shape: ", env.action_space.shape)
# number of environment steps
for i in range(10000):
for i in range(iterations):
obs, reward, done, info = env.step(env.action_space.sample())
rewards += reward
# if i % 1 == 0:
# env.render()
if i % 1 == 0:
env.render()
if done:
print(rewards)
@ -65,10 +65,5 @@ def example_async(env_id="alr_envs:HoleReacherDMP-v0", n_cpu=4, seed=int('533D',
if __name__ == '__main__':
# DMC
# example_general("fish-swim")
# custom mujoco env
# example_general("alr_envs:ALRReacher-v0")
example_general("ball_in_cup-catch")
# Mujoco task from framework
example_general("alr_envs:ALRReacher-v0")

View File

@ -83,12 +83,17 @@ def example_custom_mp(seed=1):
"weights_scale": 50,
"goal_scale": 0.1
}
env = make_dmp_env(base_env, wrappers=wrappers, seed=seed, **mp_kwargs)
env = make_dmp_env(base_env, wrappers=wrappers, seed=seed, mp_kwargs=mp_kwargs)
# OR for a deterministic ProMP:
# env = make_detpmp_env(base_env, wrappers=wrappers, seed=seed)
rewards = 0
# env.render(mode=None)
# render full DMP trajectory
# It is only required to call render() once in the beginning, which renders every consecutive trajectory.
# Resetting to no rendering, can be achieved by render(mode=None).
# It is also possible to change them mode multiple times when
# e.g. only every nth trajectory should be displayed.
env.render(mode="human")
obs = env.reset()
# number of samples/full trajectories (multiple environment steps)
@ -97,12 +102,6 @@ def example_custom_mp(seed=1):
obs, reward, done, info = env.step(ac)
rewards += reward
if i % 1 == 0:
# render full DMP trajectory
# render can only be called once in the beginning as well. That would render every trajectory
# Calling it after every trajectory allows to modify the mode. mode=None, disables rendering.
env.render(mode="human")
if done:
print(rewards)
rewards = 0

View File

@ -26,7 +26,7 @@ def make_contextual_env(rank, seed=0):
return _init
def make_env(rank, seed=0):
def _make_env(rank, seed=0):
"""
Utility function for multiprocessed env.

View File

@ -26,7 +26,7 @@ def make_contextual_env(rank, seed=0):
return _init
def make_env(rank, seed=0):
def _make_env(rank, seed=0):
"""
Utility function for multiprocessed env.

View File

@ -1,11 +1,12 @@
# Adopted from: https://github.com/denisyarats/dmc2gym/blob/master/dmc2gym/wrappers.py
# License: MIT
# Copyright (c) 2020 Denis Yarats
import matplotlib.pyplot as plt
from gym import core, spaces
from dm_control import suite, manipulation
from dm_env import specs
from typing import Any, Dict, Tuple
import numpy as np
from dm_control import manipulation, suite
from dm_env import specs
from gym import core, spaces
def _spec_to_box(spec):
@ -43,8 +44,8 @@ class DMCWrapper(core.Env):
self,
domain_name,
task_name,
task_kwargs=None,
visualize_reward={},
task_kwargs={},
visualize_reward=True,
from_pixels=False,
height=84,
width=84,
@ -65,49 +66,23 @@ class DMCWrapper(core.Env):
if domain_name == "manipulation":
assert not from_pixels, \
"TODO: Vision interface for manipulation is different to suite and needs to be implemented"
self._env = manipulation.load(
environment_name=task_name,
seed=task_kwargs['random']
)
self._env = manipulation.load(environment_name=task_name, seed=task_kwargs['random'])
else:
self._env = suite.load(
domain_name=domain_name,
task_name=task_name,
task_kwargs=task_kwargs,
visualize_reward=visualize_reward,
environment_kwargs=environment_kwargs
)
self._env = suite.load(domain_name=domain_name, task_name=task_name, task_kwargs=task_kwargs,
visualize_reward=visualize_reward, environment_kwargs=environment_kwargs)
# true and normalized action spaces
self._true_action_space = _spec_to_box([self._env.action_spec()])
self._norm_action_space = spaces.Box(
low=-1.0,
high=1.0,
shape=self._true_action_space.shape,
dtype=np.float32
)
# action and observation space
self._action_space = _spec_to_box([self._env.action_spec()])
self._observation_space = _spec_to_box(self._env.observation_spec().values())
# create observation space
if from_pixels:
shape = [3, height, width] if channels_first else [height, width, 3]
self._observation_space = spaces.Box(
low=0, high=255, shape=shape, dtype=np.uint8
)
else:
self._observation_space = _spec_to_box(
self._env.observation_spec().values()
)
self._state_space = _spec_to_box(
self._env.observation_spec().values()
)
self.current_state = None
self._last_observation = None
self.viewer = None
# set seed
self.seed(seed=task_kwargs.get('random', 1))
def __getattr__(self, name):
"""Delegate attribute access to underlying environment."""
return getattr(self._env, name)
def _get_obs(self, time_step):
@ -124,59 +99,72 @@ class DMCWrapper(core.Env):
obs = _flatten_obs(time_step.observation)
return obs
def _convert_action(self, action):
action = action.astype(float)
true_delta = self._true_action_space.high - self._true_action_space.low
norm_delta = self._norm_action_space.high - self._norm_action_space.low
action = (action - self._norm_action_space.low) / norm_delta
action = action * true_delta + self._true_action_space.low
action = action.astype(np.float32)
return action
@property
def observation_space(self):
return self._observation_space
@property
def state_space(self):
return self._state_space
@property
def action_space(self):
return self._norm_action_space
return self._action_space
def seed(self, seed):
self._true_action_space.seed(seed)
self._norm_action_space.seed(seed)
def seed(self, seed=None):
self._action_space.seed(seed)
self._observation_space.seed(seed)
def step(self, action):
assert self._norm_action_space.contains(action)
action = self._convert_action(action)
assert self._true_action_space.contains(action)
def step(self, action) -> Tuple[np.ndarray, float, bool, Dict[str, Any]]:
assert self._action_space.contains(action)
reward = 0
extra = {'internal_state': self._env.physics.get_state().copy()}
for _ in range(self._frame_skip):
time_step = self._env.step(action)
reward += time_step.reward or 0
reward += time_step.reward or 0.
done = time_step.last()
if done:
break
self._last_observation = _flatten_obs(time_step.observation)
obs = self._get_obs(time_step)
self.current_state = _flatten_obs(time_step.observation)
extra['discount'] = time_step.discount
return obs, reward, done, extra
def reset(self):
def reset(self) -> np.ndarray:
time_step = self._env.reset()
self.current_state = _flatten_obs(time_step.observation)
self._last_observation = _flatten_obs(time_step.observation)
obs = self._get_obs(time_step)
return obs
def render(self, mode='rgb_array', height=None, width=None, camera_id=0):
assert mode == 'rgb_array', 'only support rgb_array mode, given %s' % mode
height = height or self._height
width = width or self._width
camera_id = camera_id or self._camera_id
return self._env.physics.render(height=height, width=width, camera_id=camera_id)
if self._last_observation is None:
raise ValueError('Environment not ready to render. Call reset() first.')
# assert mode == 'rgb_array', 'only support rgb_array mode, given %s' % mode
if mode == "rgb_array":
height = height or self._height
width = width or self._width
camera_id = camera_id or self._camera_id
return self._env.physics.render(height=height, width=width, camera_id=camera_id)
elif mode == 'human':
if self.viewer is None:
# pylint: disable=import-outside-toplevel
# pylint: disable=g-import-not-at-top
from gym.envs.classic_control import rendering
self.viewer = rendering.SimpleImageViewer()
# Render max available buffer size. Larger is only possible by altering the XML.
img = self._env.physics.render(height=self._env.physics.model.vis.global_.offheight,
width=self._env.physics.model.vis.global_.offwidth)
self.viewer.imshow(img)
return self.viewer.isopen
def close(self):
super().close()
if self.viewer is not None and self.viewer.isopen:
self.viewer.close()
@property
def reward_range(self) -> Tuple[float, float]:
reward_spec = self._env.reward_spec()
if isinstance(reward_spec, specs.BoundedArray):
return reward_spec.minimum, reward_spec.maximum
return -float('inf'), float('inf')

View File

@ -82,7 +82,7 @@ def _make_wrapped_env(env_id: str, wrappers: Iterable[Type[gym.Wrapper]], seed=1
return _env
def make_dmp_env(env_id: str, wrappers: Iterable, seed=1, **mp_kwargs):
def make_dmp_env(env_id: str, wrappers: Iterable, seed=1, mp_kwargs={}, **kwargs):
"""
This can also be used standalone for manually building a custom DMP environment.
Args:
@ -95,11 +95,11 @@ def make_dmp_env(env_id: str, wrappers: Iterable, seed=1, **mp_kwargs):
"""
_env = _make_wrapped_env(env_id=env_id, wrappers=wrappers, seed=seed)
_env = _make_wrapped_env(env_id=env_id, wrappers=wrappers, seed=seed, **kwargs)
return DmpWrapper(_env, **mp_kwargs)
def make_detpmp_env(env_id: str, wrappers: Iterable, seed=1, **mp_kwargs):
def make_detpmp_env(env_id: str, wrappers: Iterable, seed=1, mp_kwargs={}, **kwargs):
"""
This can also be used standalone for manually building a custom Det ProMP environment.
Args:
@ -111,7 +111,7 @@ def make_detpmp_env(env_id: str, wrappers: Iterable, seed=1, **mp_kwargs):
"""
_env = _make_wrapped_env(env_id=env_id, wrappers=wrappers, seed=seed)
_env = _make_wrapped_env(env_id=env_id, wrappers=wrappers, seed=seed, **kwargs)
return DetPMPWrapper(_env, **mp_kwargs)
@ -129,9 +129,9 @@ def make_dmp_env_helper(**kwargs):
Returns: DMP wrapped gym env
"""
seed = kwargs.get("seed", None)
seed = kwargs.pop("seed", None)
return make_dmp_env(env_id=kwargs.pop("name"), wrappers=kwargs.pop("wrappers"), seed=seed,
**kwargs.get("mp_kwargs"))
mp_kwargs=kwargs.pop("mp_kwargs"), **kwargs)
def make_detpmp_env_helper(**kwargs):
@ -149,12 +149,13 @@ def make_detpmp_env_helper(**kwargs):
Returns: DMP wrapped gym env
"""
seed = kwargs.get("seed", None)
seed = kwargs.pop("seed", None)
return make_detpmp_env(env_id=kwargs.pop("name"), wrappers=kwargs.pop("wrappers"), seed=seed,
**kwargs.get("mp_kwargs"))
mp_kwargs=kwargs.pop("mp_kwargs"), **kwargs)
def make_contextual_env(env_id, context, seed, rank):
env = gym.make(env_id, context=context)
env.seed(seed + rank)
env = make_env(env_id, seed + rank, context=context)
# env = gym.make(env_id, context=context)
# env.seed(seed + rank)
return lambda: env

View File

@ -3,11 +3,7 @@ from gym.vector.async_vector_env import AsyncVectorEnv
import numpy as np
from _collections import defaultdict
def make_env(env_id, rank, seed=0, **env_kwargs):
env = gym.make(env_id, **env_kwargs)
env.seed(seed + rank)
return lambda: env
from alr_envs.utils.make_env_helpers import make_env_rank
def split_array(ary, size):
@ -55,9 +51,10 @@ class AlrMpEnvSampler:
An asynchronous sampler for non contextual MPWrapper environments. A sampler object can be called with a set of
parameters and returns the corresponding final obs, rewards, dones and info dicts.
"""
def __init__(self, env_id, num_envs, seed=0, **env_kwargs):
self.num_envs = num_envs
self.env = AsyncVectorEnv([make_env(env_id, seed, i, **env_kwargs) for i in range(num_envs)])
self.env = AsyncVectorEnv([make_env_rank(env_id, seed, i, **env_kwargs) for i in range(num_envs)])
def __call__(self, params):
params = np.atleast_2d(params)
@ -74,8 +71,8 @@ class AlrMpEnvSampler:
vals['info'].append(info)
# do not return values above threshold
return np.vstack(vals['obs'])[:n_samples], np.hstack(vals['reward'])[:n_samples],\
_flatten_list(vals['done'])[:n_samples], _flatten_list(vals['info'])[:n_samples]
return np.vstack(vals['obs'])[:n_samples], np.hstack(vals['reward'])[:n_samples], \
_flatten_list(vals['done'])[:n_samples], _flatten_list(vals['info'])[:n_samples]
class AlrContextualMpEnvSampler:
@ -83,12 +80,12 @@ class AlrContextualMpEnvSampler:
An asynchronous sampler for contextual MPWrapper environments. A sampler object can be called with a set of
parameters and returns the corresponding final obs, rewards, dones and info dicts.
"""
def __init__(self, env_id, num_envs, seed=0, **env_kwargs):
self.num_envs = num_envs
self.env = AsyncVectorEnv([make_env(env_id, seed, i, **env_kwargs) for i in range(num_envs)])
def __call__(self, dist, n_samples):
repeat = int(np.ceil(n_samples / self.env.num_envs))
vals = defaultdict(list)
@ -106,8 +103,8 @@ class AlrContextualMpEnvSampler:
# do not return values above threshold
return np.vstack(vals['new_samples'])[:n_samples], \
np.vstack(vals['obs'])[:n_samples], np.hstack(vals['reward'])[:n_samples], \
_flatten_list(vals['done'])[:n_samples], _flatten_list(vals['info'])[:n_samples]
np.vstack(vals['obs'])[:n_samples], np.hstack(vals['reward'])[:n_samples], \
_flatten_list(vals['done'])[:n_samples], _flatten_list(vals['info'])[:n_samples]
if __name__ == "__main__":