updated via point reacher example to new structure

This commit is contained in:
ottofabian 2021-06-24 15:19:40 +02:00
parent fa7dfdc081
commit f3d837349a

View File

@ -7,9 +7,10 @@ from gym.utils import seeding
from alr_envs.classic_control.utils import check_self_collision
from mp_env_api.envs.mp_env import MpEnv
from mp_env_api.envs.mp_env_wrapper import MPEnvWrapper
class ViaPointReacher(MpEnv):
class ViaPointReacher(gym.Env):
def __init__(self, n_links, random_start: bool = True, via_target: Union[None, Iterable] = None,
target: Union[None, Iterable] = None, allow_self_collision=False, collision_penalty=1000):
@ -20,8 +21,8 @@ class ViaPointReacher(MpEnv):
self.random_start = random_start
# provided initial parameters
self._target = target # provided target value
self._via_target = via_target # provided via point target value
self.target = target # provided target value
self.via_target = via_target # provided via point target value
# temp container for current env state
self._via_point = np.ones(2)
@ -39,7 +40,7 @@ class ViaPointReacher(MpEnv):
self._start_vel = np.zeros(self.n_links)
self.weight_matrix_scale = 1
self.dt = 0.01
self._dt = 0.01
action_bound = np.pi * np.ones((self.n_links,))
state_bound = np.hstack([
@ -60,6 +61,10 @@ class ViaPointReacher(MpEnv):
self._steps = 0
self.seed()
@property
def dt(self):
return self._dt
def step(self, action: np.ndarray):
"""
a single step with an action in joint velocity space
@ -104,22 +109,22 @@ class ViaPointReacher(MpEnv):
total_length = np.sum(self.link_lengths)
# rejection sampled point in inner circle with 0.5*Radius
if self._via_target is None:
if self.via_target is None:
via_target = np.array([total_length, total_length])
while np.linalg.norm(via_target) >= 0.5 * total_length:
via_target = self.np_random.uniform(low=-0.5 * total_length, high=0.5 * total_length, size=2)
else:
via_target = np.copy(self._via_target)
via_target = np.copy(self.via_target)
# rejection sampled point in outer circle
if self._target is None:
if self.target is None:
goal = np.array([total_length, total_length])
while np.linalg.norm(goal) >= total_length or np.linalg.norm(goal) <= 0.5 * total_length:
goal = self.np_random.uniform(low=-total_length, high=total_length, size=2)
else:
goal = np.copy(self._target)
goal = np.copy(self.target)
self._via_target = via_target
self.via_target = via_target
self._goal = goal
def _update_joints(self):
@ -266,25 +271,6 @@ class ViaPointReacher(MpEnv):
plt.pause(0.01)
@property
def active_obs(self):
return np.hstack([
[self.random_start] * self.n_links, # cos
[self.random_start] * self.n_links, # sin
[self.random_start] * self.n_links, # velocity
[self._via_target is None] * 2, # x-y coordinates of via point distance
[True] * 2, # x-y coordinates of target distance
[False] # env steps
])
@property
def start_pos(self) -> Union[float, int, np.ndarray]:
return self._start_pos
@property
def goal_pos(self) -> Union[float, int, np.ndarray]:
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
@ -298,24 +284,25 @@ class ViaPointReacher(MpEnv):
plt.close(self.fig)
if __name__ == '__main__':
nl = 5
render_mode = "human" # "human" or "partial" or "final"
env = ViaPointReacher(n_links=nl, allow_self_collision=False)
env.reset()
env.render(mode=render_mode)
class ViaPointReacherMPWrapper(MPEnvWrapper):
@property
def active_obs(self):
return np.hstack([
[self.env.random_start] * self.env.n_links, # cos
[self.env.random_start] * self.env.n_links, # sin
[self.env.random_start] * self.env.n_links, # velocity
[self.env.via_target is None] * 2, # x-y coordinates of via point distance
[True] * 2, # x-y coordinates of target distance
[False] # env steps
])
for i in range(300):
# objective.load_result("/tmp/cma")
# test with random actions
ac = env.action_space.sample()
# ac[0] += np.pi/2
obs, rew, d, info = env.step(ac)
env.render(mode=render_mode)
@property
def start_pos(self) -> Union[float, int, np.ndarray]:
return self._start_pos
print(rew)
@property
def goal_pos(self) -> Union[float, int, np.ndarray]:
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
if d:
break
env.close()
def dt(self) -> Union[float, int]:
return self.env.dt