diff --git a/alr_envs/alr/__init__.py b/alr_envs/alr/__init__.py index 1b7d378..3aea422 100644 --- a/alr_envs/alr/__init__.py +++ b/alr_envs/alr/__init__.py @@ -157,60 +157,36 @@ register( id='ALRAntJump-v0', entry_point='alr_envs.alr.mujoco:AntJumpEnv', max_episode_steps=MAX_EPISODE_STEPS_ANTJUMP, - kwargs={ - "max_episode_steps": MAX_EPISODE_STEPS_ANTJUMP, - "context": True - } ) register( id='ALRHalfCheetahJump-v0', entry_point='alr_envs.alr.mujoco:ALRHalfCheetahJumpEnv', max_episode_steps=MAX_EPISODE_STEPS_HALFCHEETAHJUMP, - kwargs={ - "max_episode_steps": MAX_EPISODE_STEPS_HALFCHEETAHJUMP, - "context": True - } ) register( id='HopperJumpOnBox-v0', - entry_point='alr_envs.alr.mujoco:ALRHopperJumpOnBoxEnv', + entry_point='alr_envs.alr.mujoco:HopperJumpOnBoxEnv', max_episode_steps=MAX_EPISODE_STEPS_HOPPERJUMPONBOX, - kwargs={ - "max_episode_steps": MAX_EPISODE_STEPS_HOPPERJUMPONBOX, - "context": True - } ) register( id='ALRHopperThrow-v0', entry_point='alr_envs.alr.mujoco:ALRHopperThrowEnv', max_episode_steps=MAX_EPISODE_STEPS_HOPPERTHROW, - kwargs={ - "max_episode_steps": MAX_EPISODE_STEPS_HOPPERTHROW, - "context": True - } ) register( id='ALRHopperThrowInBasket-v0', entry_point='alr_envs.alr.mujoco:ALRHopperThrowInBasketEnv', max_episode_steps=MAX_EPISODE_STEPS_HOPPERTHROWINBASKET, - kwargs={ - "max_episode_steps": MAX_EPISODE_STEPS_HOPPERTHROWINBASKET, - "context": True - } ) register( id='ALRWalker2DJump-v0', entry_point='alr_envs.alr.mujoco:ALRWalker2dJumpEnv', max_episode_steps=MAX_EPISODE_STEPS_WALKERJUMP, - kwargs={ - "max_episode_steps": MAX_EPISODE_STEPS_WALKERJUMP, - "context": True - } ) register( @@ -403,46 +379,48 @@ for _v in _versions: ## Table Tennis needs to be fixed according to Zhou's implementation -######################################################################################################################## - -## AntJump -_versions = ['ALRAntJump-v0'] -for _v in _versions: - _name = _v.split("-") - _env_id = f'{_name[0]}ProMP-{_name[1]}' - kwargs_dict_ant_jump_promp = deepcopy(DEFAULT_BB_DICT_ProMP) - kwargs_dict_ant_jump_promp['wrappers'].append(mujoco.ant_jump.MPWrapper) - kwargs_dict_ant_jump_promp['name'] = _v - register( - id=_env_id, - entry_point='alr_envs.utils.make_env_helpers:make_bb_env_helper', - kwargs=kwargs_dict_ant_jump_promp - ) - ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS["ProMP"].append(_env_id) - -######################################################################################################################## - -## HalfCheetahJump -_versions = ['ALRHalfCheetahJump-v0'] -for _v in _versions: - _name = _v.split("-") - _env_id = f'{_name[0]}ProMP-{_name[1]}' - kwargs_dict_halfcheetah_jump_promp = deepcopy(DEFAULT_BB_DICT_ProMP) - kwargs_dict_halfcheetah_jump_promp['wrappers'].append(mujoco.half_cheetah_jump.MPWrapper) - kwargs_dict_halfcheetah_jump_promp['name'] = _v - register( - id=_env_id, - entry_point='alr_envs.utils.make_env_helpers:make_bb_env_helper', - kwargs=kwargs_dict_halfcheetah_jump_promp - ) - ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS["ProMP"].append(_env_id) - -######################################################################################################################## +# TODO: Add later when finished +# ######################################################################################################################## +# +# ## AntJump +# _versions = ['ALRAntJump-v0'] +# for _v in _versions: +# _name = _v.split("-") +# _env_id = f'{_name[0]}ProMP-{_name[1]}' +# kwargs_dict_ant_jump_promp = deepcopy(DEFAULT_BB_DICT_ProMP) +# kwargs_dict_ant_jump_promp['wrappers'].append(mujoco.ant_jump.MPWrapper) +# kwargs_dict_ant_jump_promp['name'] = _v +# register( +# id=_env_id, +# entry_point='alr_envs.utils.make_env_helpers:make_bb_env_helper', +# kwargs=kwargs_dict_ant_jump_promp +# ) +# ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS["ProMP"].append(_env_id) +# +# ######################################################################################################################## +# +# ## HalfCheetahJump +# _versions = ['ALRHalfCheetahJump-v0'] +# for _v in _versions: +# _name = _v.split("-") +# _env_id = f'{_name[0]}ProMP-{_name[1]}' +# kwargs_dict_halfcheetah_jump_promp = deepcopy(DEFAULT_BB_DICT_ProMP) +# kwargs_dict_halfcheetah_jump_promp['wrappers'].append(mujoco.half_cheetah_jump.MPWrapper) +# kwargs_dict_halfcheetah_jump_promp['name'] = _v +# register( +# id=_env_id, +# entry_point='alr_envs.utils.make_env_helpers:make_bb_env_helper', +# kwargs=kwargs_dict_halfcheetah_jump_promp +# ) +# ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS["ProMP"].append(_env_id) +# +# ######################################################################################################################## ## HopperJump -_versions = ['HopperJump-v0', 'HopperJumpSparse-v0', 'ALRHopperJumpOnBox-v0', 'ALRHopperThrow-v0', - 'ALRHopperThrowInBasket-v0'] +_versions = ['HopperJump-v0', 'HopperJumpSparse-v0', + # 'ALRHopperJumpOnBox-v0', 'ALRHopperThrow-v0', 'ALRHopperThrowInBasket-v0' + ] # TODO: Check if all environments work with the same MPWrapper for _v in _versions: _name = _v.split("-") @@ -457,23 +435,23 @@ for _v in _versions: ) ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS["ProMP"].append(_env_id) -######################################################################################################################## - - -## Walker2DJump -_versions = ['ALRWalker2DJump-v0'] -for _v in _versions: - _name = _v.split("-") - _env_id = f'{_name[0]}ProMP-{_name[1]}' - kwargs_dict_walker2d_jump_promp = deepcopy(DEFAULT_BB_DICT_ProMP) - kwargs_dict_walker2d_jump_promp['wrappers'].append(mujoco.walker_2d_jump.MPWrapper) - kwargs_dict_walker2d_jump_promp['name'] = _v - register( - id=_env_id, - entry_point='alr_envs.utils.make_env_helpers:make_bb_env_helper', - kwargs=kwargs_dict_walker2d_jump_promp - ) - ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS["ProMP"].append(_env_id) +# ######################################################################################################################## +# +# +# ## Walker2DJump +# _versions = ['ALRWalker2DJump-v0'] +# for _v in _versions: +# _name = _v.split("-") +# _env_id = f'{_name[0]}ProMP-{_name[1]}' +# kwargs_dict_walker2d_jump_promp = deepcopy(DEFAULT_BB_DICT_ProMP) +# kwargs_dict_walker2d_jump_promp['wrappers'].append(mujoco.walker_2d_jump.MPWrapper) +# kwargs_dict_walker2d_jump_promp['name'] = _v +# register( +# id=_env_id, +# entry_point='alr_envs.utils.make_env_helpers:make_bb_env_helper', +# kwargs=kwargs_dict_walker2d_jump_promp +# ) +# ALL_ALR_MOTION_PRIMITIVE_ENVIRONMENTS["ProMP"].append(_env_id) ### Depricated, we will not provide non random starts anymore """ @@ -639,7 +617,7 @@ for i in _vs: register( id='ALRHopperJumpOnBox-v0', - entry_point='alr_envs.alr.mujoco:ALRHopperJumpOnBoxEnv', + entry_point='alr_envs.alr.mujoco:HopperJumpOnBoxEnv', max_episode_steps=MAX_EPISODE_STEPS_HOPPERJUMPONBOX, kwargs={ "max_episode_steps": MAX_EPISODE_STEPS_HOPPERJUMPONBOX, diff --git a/alr_envs/alr/mujoco/__init__.py b/alr_envs/alr/mujoco/__init__.py index 6e40228..c099363 100644 --- a/alr_envs/alr/mujoco/__init__.py +++ b/alr_envs/alr/mujoco/__init__.py @@ -1,8 +1,9 @@ from .beerpong.beerpong import BeerPongEnv, BeerPongEnvFixedReleaseStep, BeerPongEnvStepBasedEpisodicReward from .ant_jump.ant_jump import AntJumpEnv from .half_cheetah_jump.half_cheetah_jump import ALRHalfCheetahJumpEnv -from .hopper_jump.hopper_jump_on_box import ALRHopperJumpOnBoxEnv +from .hopper_jump.hopper_jump_on_box import HopperJumpOnBoxEnv from .hopper_throw.hopper_throw import ALRHopperThrowEnv from .hopper_throw.hopper_throw_in_basket import ALRHopperThrowInBasketEnv from .reacher.reacher import ReacherEnv from .walker_2d_jump.walker_2d_jump import ALRWalker2dJumpEnv +from .hopper_jump.hopper_jump import HopperJumpEnv diff --git a/alr_envs/alr/mujoco/beerpong/mp_wrapper.py b/alr_envs/alr/mujoco/beerpong/mp_wrapper.py index e69d4f9..5b53e77 100644 --- a/alr_envs/alr/mujoco/beerpong/mp_wrapper.py +++ b/alr_envs/alr/mujoco/beerpong/mp_wrapper.py @@ -7,7 +7,8 @@ from alr_envs.black_box.raw_interface_wrapper import RawInterfaceWrapper class MPWrapper(RawInterfaceWrapper): - def get_context_mask(self): + @property + def context_mask(self) -> np.ndarray: return np.hstack([ [False] * 7, # cos [False] * 7, # sin @@ -15,16 +16,16 @@ class MPWrapper(RawInterfaceWrapper): [False] * 3, # cup_goal_diff_final [False] * 3, # cup_goal_diff_top [True] * 2, # xy position of cup - [False] # env steps + # [False] # env steps ]) @property def current_pos(self) -> Union[float, int, np.ndarray, Tuple]: - return self.env.sim.data.qpos[0:7].copy() + return self.env.data.qpos[0:7].copy() @property def current_vel(self) -> Union[float, int, np.ndarray, Tuple]: - return self.env.sim.data.qvel[0:7].copy() + return self.env.data.qvel[0:7].copy() # TODO: Fix this def _episode_callback(self, action: np.ndarray, mp) -> Tuple[np.ndarray, Union[np.ndarray, None]]: diff --git a/alr_envs/alr/mujoco/half_cheetah_jump/half_cheetah_jump.py b/alr_envs/alr/mujoco/half_cheetah_jump/half_cheetah_jump.py index a90edf6..151a533 100644 --- a/alr_envs/alr/mujoco/half_cheetah_jump/half_cheetah_jump.py +++ b/alr_envs/alr/mujoco/half_cheetah_jump/half_cheetah_jump.py @@ -69,7 +69,7 @@ class ALRHalfCheetahJumpEnv(HalfCheetahEnv): options: Optional[dict] = None, ) -> Union[ObsType, Tuple[ObsType, dict]]: self.max_height = 0 self.current_step = 0 - self.goal = np.random.uniform(1.1, 1.6, 1) # 1.1 1.6 + self.goal = self.np_random.uniform(1.1, 1.6, 1) # 1.1 1.6 return super().reset() # overwrite reset_model to make it deterministic diff --git a/alr_envs/alr/mujoco/hopper_jump/__init__.py b/alr_envs/alr/mujoco/hopper_jump/__init__.py index e901144..c5e6d2f 100644 --- a/alr_envs/alr/mujoco/hopper_jump/__init__.py +++ b/alr_envs/alr/mujoco/hopper_jump/__init__.py @@ -1,2 +1 @@ from .mp_wrapper import MPWrapper - diff --git a/alr_envs/alr/mujoco/hopper_jump/hopper_jump.py b/alr_envs/alr/mujoco/hopper_jump/hopper_jump.py index 7409300..f915e9e 100644 --- a/alr_envs/alr/mujoco/hopper_jump/hopper_jump.py +++ b/alr_envs/alr/mujoco/hopper_jump/hopper_jump.py @@ -1,10 +1,9 @@ import copy -from typing import Optional - -from gym.envs.mujoco.hopper_v3 import HopperEnv -import numpy as np import os +import numpy as np +from gym.envs.mujoco.hopper_v3 import HopperEnv + MAX_EPISODE_STEPS_HOPPERJUMP = 250 @@ -23,10 +22,10 @@ class HopperJumpEnv(HopperEnv): xml_file='hopper_jump.xml', forward_reward_weight=1.0, ctrl_cost_weight=1e-3, - healthy_reward=2.0, # 1 step - contact_weight=2.0, # 0 step - height_weight=10.0, # 3 step - dist_weight=3.0, # 3 step + healthy_reward=2.0, + contact_weight=2.0, + height_weight=10.0, + dist_weight=3.0, terminate_when_unhealthy=False, healthy_state_range=(-100.0, 100.0), healthy_z_range=(0.5, float('inf')), @@ -42,7 +41,7 @@ class HopperJumpEnv(HopperEnv): self._contact_weight = contact_weight self.max_height = 0 - self.goal = 0 + self.goal = np.zeros(3, ) self._steps = 0 self.contact_with_floor = False @@ -58,6 +57,10 @@ class HopperJumpEnv(HopperEnv): # increase initial height self.init_qpos[1] = 1.5 + @property + def exclude_current_positions_from_observation(self): + return self._exclude_current_positions_from_observation + def step(self, action): self._steps += 1 @@ -80,7 +83,7 @@ class HopperJumpEnv(HopperEnv): costs = ctrl_cost done = False - goal_dist = np.linalg.norm(site_pos_after - np.array([self.goal, 0, 0])) + goal_dist = np.linalg.norm(site_pos_after - self.goal) if self.contact_dist is None and self.contact_with_floor: self.contact_dist = goal_dist @@ -99,7 +102,7 @@ class HopperJumpEnv(HopperEnv): height=height_after, x_pos=site_pos_after, max_height=self.max_height, - goal=self.goal, + goal=self.goal[:1], goal_dist=goal_dist, height_rew=self.max_height, healthy_reward=self.healthy_reward * 2, @@ -109,14 +112,15 @@ class HopperJumpEnv(HopperEnv): return observation, reward, done, info def _get_obs(self): - goal_dist = self.data.get_site_xpos('foot_site') - np.array([self.goal, 0, 0]) - return np.concatenate((super(HopperJumpEnv, self)._get_obs(), goal_dist.copy(), self.goal.copy())) + goal_dist = self.data.get_site_xpos('foot_site') - self.goal + return np.concatenate((super(HopperJumpEnv, self)._get_obs(), goal_dist.copy(), self.goal[:1])) def reset_model(self): super(HopperJumpEnv, self).reset_model() - self.goal = self.np_random.uniform(0.3, 1.35, 1)[0] - self.sim.model.body_pos[self.sim.model.body_name2id('goal_site_body')] = np.array([self.goal, 0, 0]) + # self.goal = self.np_random.uniform(0.3, 1.35, 1)[0] + self.goal = np.concatenate([self.np_random.uniform(0.3, 1.35, 1), np.zeros(2, )]) + self.sim.model.body_pos[self.sim.model.body_name2id('goal_site_body')] = self.goal self.max_height = 0 self._steps = 0 diff --git a/alr_envs/alr/mujoco/hopper_jump/hopper_jump_on_box.py b/alr_envs/alr/mujoco/hopper_jump/hopper_jump_on_box.py index e5e363e..ac7e16b 100644 --- a/alr_envs/alr/mujoco/hopper_jump/hopper_jump_on_box.py +++ b/alr_envs/alr/mujoco/hopper_jump/hopper_jump_on_box.py @@ -6,7 +6,7 @@ import os MAX_EPISODE_STEPS_HOPPERJUMPONBOX = 250 -class ALRHopperJumpOnBoxEnv(HopperEnv): +class HopperJumpOnBoxEnv(HopperEnv): """ Initialization changes to normal Hopper: - healthy_reward: 1.0 -> 0.01 -> 0.001 @@ -153,7 +153,7 @@ class ALRHopperJumpOnBoxEnv(HopperEnv): if __name__ == '__main__': render_mode = "human" # "human" or "partial" or "final" - env = ALRHopperJumpOnBoxEnv() + env = HopperJumpOnBoxEnv() obs = env.reset() for i in range(2000): diff --git a/alr_envs/alr/mujoco/hopper_jump/mp_wrapper.py b/alr_envs/alr/mujoco/hopper_jump/mp_wrapper.py index 394893e..8e91bea 100644 --- a/alr_envs/alr/mujoco/hopper_jump/mp_wrapper.py +++ b/alr_envs/alr/mujoco/hopper_jump/mp_wrapper.py @@ -14,7 +14,8 @@ class MPWrapper(RawInterfaceWrapper): [False] * (2 + int(not self.exclude_current_positions_from_observation)), # position [True] * 3, # set to true if randomize initial pos [False] * 6, # velocity - [True] + [True] * 3, # goal distance + [True] # goal ]) @property diff --git a/alr_envs/black_box/black_box_wrapper.py b/alr_envs/black_box/black_box_wrapper.py index 9483082..a3b504c 100644 --- a/alr_envs/black_box/black_box_wrapper.py +++ b/alr_envs/black_box/black_box_wrapper.py @@ -67,7 +67,9 @@ class BlackBoxWrapper(gym.ObservationWrapper): def observation(self, observation): # return context space if we are - return observation[self.env.context_mask] if self.return_context_observation else observation + obs = observation[self.env.context_mask] if self.return_context_observation else observation + # cast dtype because metaworld returns incorrect that throws gym error + return obs.astype(self.observation_space.dtype) def get_trajectory(self, action: np.ndarray) -> Tuple: clipped_params = np.clip(action, self.traj_gen_action_space.low, self.traj_gen_action_space.high) @@ -147,7 +149,7 @@ class BlackBoxWrapper(gym.ObservationWrapper): infos[k] = elems if self.render_kwargs: - self.render(**self.render_kwargs) + self.env.render(**self.render_kwargs) if done or self.replanning_schedule(self.current_pos, self.current_vel, obs, c_action, t + 1 + self.current_traj_steps): @@ -170,13 +172,13 @@ class BlackBoxWrapper(gym.ObservationWrapper): def render(self, **kwargs): """Only set render options here, such that they can be used during the rollout. This only needs to be called once""" - self.render_kwargs = kwargs or self.render_kwargs + self.render_kwargs = kwargs # self.env.render(mode=self.render_mode, **self.render_kwargs) - self.env.render(**self.render_kwargs) + # self.env.render(**self.render_kwargs) def reset(self, *, seed: Optional[int] = None, return_info: bool = False, options: Optional[dict] = None): self.current_traj_steps = 0 - return super(BlackBoxWrapper, self).reset(seed=seed, return_info=return_info, options=options) + return super(BlackBoxWrapper, self).reset() def plot_trajs(self, des_trajs, des_vels): import matplotlib.pyplot as plt diff --git a/alr_envs/black_box/controller/meta_world_controller.py b/alr_envs/black_box/controller/meta_world_controller.py index 296ea3a..3781f15 100644 --- a/alr_envs/black_box/controller/meta_world_controller.py +++ b/alr_envs/black_box/controller/meta_world_controller.py @@ -10,13 +10,12 @@ class MetaWorldController(BaseController): Unlike the other Controllers, this is a special tracking_controller for MetaWorld environments. They use a position delta for the xyz coordinates and a raw position for the gripper opening. - :param env: A position environment """ def get_action(self, des_pos, des_vel, c_pos, c_vel): gripper_pos = des_pos[-1] - cur_pos = env.current_pos[:-1] + cur_pos = c_pos[:-1] xyz_pos = des_pos[:-1] assert xyz_pos.shape == cur_pos.shape, \ diff --git a/alr_envs/black_box/controller/controller_factory.py b/alr_envs/black_box/factory/controller_factory.py similarity index 93% rename from alr_envs/black_box/controller/controller_factory.py rename to alr_envs/black_box/factory/controller_factory.py index 6ef7960..a1d068b 100644 --- a/alr_envs/black_box/controller/controller_factory.py +++ b/alr_envs/black_box/factory/controller_factory.py @@ -18,4 +18,4 @@ def get_controller(controller_type: str, **kwargs): return MetaWorldController() else: raise ValueError(f"Specified controller type {controller_type} not supported, " - f"please choose one of {ALL_TYPES}.") \ No newline at end of file + f"please choose one of {ALL_TYPES}.") diff --git a/alr_envs/examples/examples_movement_primitives.py b/alr_envs/examples/examples_movement_primitives.py index a2f5d54..df8c44a 100644 --- a/alr_envs/examples/examples_movement_primitives.py +++ b/alr_envs/examples/examples_movement_primitives.py @@ -63,16 +63,16 @@ def example_custom_mp(env_name="Reacher5dProMP-v0", seed=1, iterations=1, render # mp_dict.update({'black_box_kwargs': {'learn_sub_trajectories': True}}) # mp_dict.update({'black_box_kwargs': {'do_replanning': lambda pos, vel, t: lambda t: t % 100}}) + rewards = 0 + obs = env.reset() + # This time rendering every trajectory if render: env.render(mode="human") - rewards = 0 - obs = env.reset() - # number of samples/full trajectories (multiple environment steps) for i in range(iterations): - ac = env.action_space.sample() + ac = env.action_space.sample() * 1000 obs, reward, done, info = env.step(ac) rewards += reward @@ -139,7 +139,7 @@ def example_fully_custom_mp(seed=1, iterations=1, render=True): if __name__ == '__main__': - render = False + render = True # # DMP # example_mp("alr_envs:HoleReacherDMP-v1", seed=10, iterations=1, render=render) # @@ -150,7 +150,7 @@ if __name__ == '__main__': # example_mp("alr_envs:HoleReacherDetPMP-v1", seed=10, iterations=1, render=render) # Altered basis functions - example_custom_mp("Reacher5dProMP-v0", seed=10, iterations=10, render=render) + example_custom_mp("HopperJumpSparseProMP-v0", seed=10, iterations=10, render=render) # Custom MP # example_fully_custom_mp(seed=10, iterations=1, render=render) diff --git a/alr_envs/meta/__init__.py b/alr_envs/meta/__init__.py index e0d0ea0..97d8197 100644 --- a/alr_envs/meta/__init__.py +++ b/alr_envs/meta/__init__.py @@ -1,3 +1,5 @@ +from copy import deepcopy + from gym import register from . import goal_object_change_mp_wrapper, goal_change_mp_wrapper, goal_endeffector_change_mp_wrapper, \ @@ -7,27 +9,39 @@ ALL_METAWORLD_MOTION_PRIMITIVE_ENVIRONMENTS = {"DMP": [], "ProMP": []} # MetaWorld +DEFAULT_BB_DICT_ProMP = { + "name": 'EnvName', + "wrappers": [], + "trajectory_generator_kwargs": { + 'trajectory_generator_type': 'promp' + }, + "phase_generator_kwargs": { + 'phase_generator_type': 'linear' + }, + "controller_kwargs": { + 'controller_type': 'metaworld', + }, + "basis_generator_kwargs": { + 'basis_generator_type': 'zero_rbf', + 'num_basis': 5, + 'num_basis_zero_start': 1 + } +} + _goal_change_envs = ["assembly-v2", "pick-out-of-hole-v2", "plate-slide-v2", "plate-slide-back-v2", "plate-slide-side-v2", "plate-slide-back-side-v2"] for _task in _goal_change_envs: task_id_split = _task.split("-") name = "".join([s.capitalize() for s in task_id_split[:-1]]) _env_id = f'{name}ProMP-{task_id_split[-1]}' + kwargs_dict_goal_change_promp = deepcopy(DEFAULT_BB_DICT_ProMP) + kwargs_dict_goal_change_promp['wrappers'].append(goal_change_mp_wrapper.MPWrapper) + kwargs_dict_goal_change_promp['name'] = _task + register( id=_env_id, - entry_point='alr_envs.utils.make_env_helpers:make_promp_env_helper', - kwargs={ - "name": _task, - "wrappers": [goal_change_mp_wrapper.MPWrapper], - "traj_gen_kwargs": { - "num_dof": 4, - "num_basis": 5, - "duration": 6.25, - "post_traj_time": 0, - "zero_start": True, - "policy_type": "metaworld", - } - } + entry_point='alr_envs.utils.make_env_helpers:make_bb_env_helper', + kwargs=kwargs_dict_goal_change_promp ) ALL_METAWORLD_MOTION_PRIMITIVE_ENVIRONMENTS["ProMP"].append(_env_id) @@ -36,21 +50,13 @@ for _task in _object_change_envs: task_id_split = _task.split("-") name = "".join([s.capitalize() for s in task_id_split[:-1]]) _env_id = f'{name}ProMP-{task_id_split[-1]}' + kwargs_dict_object_change_promp = deepcopy(DEFAULT_BB_DICT_ProMP) + kwargs_dict_object_change_promp['wrappers'].append(object_change_mp_wrapper.MPWrapper) + kwargs_dict_object_change_promp['name'] = _task register( id=_env_id, - entry_point='alr_envs.utils.make_env_helpers:make_promp_env_helper', - kwargs={ - "name": _task, - "wrappers": [object_change_mp_wrapper.MPWrapper], - "traj_gen_kwargs": { - "num_dof": 4, - "num_basis": 5, - "duration": 6.25, - "post_traj_time": 0, - "zero_start": True, - "policy_type": "metaworld", - } - } + entry_point='alr_envs.utils.make_env_helpers:make_bb_env_helper', + kwargs=kwargs_dict_object_change_promp ) ALL_METAWORLD_MOTION_PRIMITIVE_ENVIRONMENTS["ProMP"].append(_env_id) @@ -69,21 +75,14 @@ for _task in _goal_and_object_change_envs: task_id_split = _task.split("-") name = "".join([s.capitalize() for s in task_id_split[:-1]]) _env_id = f'{name}ProMP-{task_id_split[-1]}' + kwargs_dict_goal_and_object_change_promp = deepcopy(DEFAULT_BB_DICT_ProMP) + kwargs_dict_goal_and_object_change_promp['wrappers'].append(goal_object_change_mp_wrapper.MPWrapper) + kwargs_dict_goal_and_object_change_promp['name'] = _task + register( id=_env_id, - entry_point='alr_envs.utils.make_env_helpers:make_promp_env_helper', - kwargs={ - "name": _task, - "wrappers": [goal_object_change_mp_wrapper.MPWrapper], - "traj_gen_kwargs": { - "num_dof": 4, - "num_basis": 5, - "duration": 6.25, - "post_traj_time": 0, - "zero_start": True, - "policy_type": "metaworld", - } - } + entry_point='alr_envs.utils.make_env_helpers:make_bb_env_helper', + kwargs=kwargs_dict_goal_and_object_change_promp ) ALL_METAWORLD_MOTION_PRIMITIVE_ENVIRONMENTS["ProMP"].append(_env_id) @@ -92,20 +91,13 @@ for _task in _goal_and_endeffector_change_envs: task_id_split = _task.split("-") name = "".join([s.capitalize() for s in task_id_split[:-1]]) _env_id = f'{name}ProMP-{task_id_split[-1]}' + kwargs_dict_goal_and_endeffector_change_promp = deepcopy(DEFAULT_BB_DICT_ProMP) + kwargs_dict_goal_and_endeffector_change_promp['wrappers'].append(goal_endeffector_change_mp_wrapper.MPWrapper) + kwargs_dict_goal_and_endeffector_change_promp['name'] = _task + register( id=_env_id, - entry_point='alr_envs.utils.make_env_helpers:make_promp_env_helper', - kwargs={ - "name": _task, - "wrappers": [goal_endeffector_change_mp_wrapper.MPWrapper], - "traj_gen_kwargs": { - "num_dof": 4, - "num_basis": 5, - "duration": 6.25, - "post_traj_time": 0, - "zero_start": True, - "policy_type": "metaworld", - } - } + entry_point='alr_envs.utils.make_env_helpers:make_bb_env_helper', + kwargs=kwargs_dict_goal_and_endeffector_change_promp ) ALL_METAWORLD_MOTION_PRIMITIVE_ENVIRONMENTS["ProMP"].append(_env_id) diff --git a/alr_envs/meta/base_metaworld_mp_wrapper.py b/alr_envs/meta/base_metaworld_mp_wrapper.py new file mode 100644 index 0000000..d2af07d --- /dev/null +++ b/alr_envs/meta/base_metaworld_mp_wrapper.py @@ -0,0 +1,21 @@ +from abc import ABC +from typing import Tuple, Union + +import numpy as np + +from alr_envs.black_box.raw_interface_wrapper import RawInterfaceWrapper + + +class BaseMetaworldMPWrapper(RawInterfaceWrapper, ABC): + @property + def current_pos(self) -> Union[float, int, np.ndarray]: + r_close = self.env.data.get_joint_qpos("r_close") + # TODO check if this is correct + # return np.hstack([self.env.data.get_body_xpos('hand').flatten() / self.env.action_scale, r_close]) + return np.hstack([self.env.data.mocap_pos.flatten() / self.env.action_scale, r_close]) + + @property + def current_vel(self) -> Union[float, int, np.ndarray, Tuple]: + # TODO check if this is correct + return np.zeros(4, ) + # raise NotImplementedError("Velocity cannot be retrieved.") diff --git a/alr_envs/meta/goal_change_mp_wrapper.py b/alr_envs/meta/goal_change_mp_wrapper.py index e628a0c..5580eae 100644 --- a/alr_envs/meta/goal_change_mp_wrapper.py +++ b/alr_envs/meta/goal_change_mp_wrapper.py @@ -1,11 +1,9 @@ -from typing import Tuple, Union - import numpy as np -from alr_envs.black_box.raw_interface_wrapper import RawInterfaceWrapper +from alr_envs.meta.base_metaworld_mp_wrapper import BaseMetaworldMPWrapper -class MPWrapper(RawInterfaceWrapper): +class MPWrapper(BaseMetaworldMPWrapper): """ This Wrapper is for environments where merely the goal changes in the beginning and no secondary objects or end effectors are altered at the start of an episode. @@ -49,20 +47,3 @@ class MPWrapper(RawInterfaceWrapper): # Goal [True] * 3, # goal position ]) - - @property - def current_pos(self) -> Union[float, int, np.ndarray]: - r_close = self.env.data.get_joint_qpos("r_close") - return np.hstack([self.env.data.mocap_pos.flatten() / self.env.action_scale, r_close]) - - @property - def current_vel(self) -> Union[float, int, np.ndarray, Tuple]: - raise NotImplementedError("Velocity cannot be retrieved.") - - @property - def goal_pos(self) -> Union[float, int, np.ndarray, Tuple]: - raise ValueError("Goal position is not available and has to be learnt based on the environment.") - - @property - def dt(self) -> Union[float, int]: - return self.env.dt diff --git a/alr_envs/meta/goal_endeffector_change_mp_wrapper.py b/alr_envs/meta/goal_endeffector_change_mp_wrapper.py index 1a128e7..baa5789 100644 --- a/alr_envs/meta/goal_endeffector_change_mp_wrapper.py +++ b/alr_envs/meta/goal_endeffector_change_mp_wrapper.py @@ -1,11 +1,9 @@ -from typing import Tuple, Union - import numpy as np -from alr_envs.black_box.raw_interface_wrapper import RawInterfaceWrapper +from alr_envs.meta.base_metaworld_mp_wrapper import BaseMetaworldMPWrapper -class MPWrapper(RawInterfaceWrapper): +class MPWrapper(BaseMetaworldMPWrapper): """ This Wrapper is for environments where merely the goal changes in the beginning and no secondary objects or end effectors are altered at the start of an episode. @@ -49,20 +47,3 @@ class MPWrapper(RawInterfaceWrapper): # Goal [True] * 3, # goal position ]) - - @property - def current_pos(self) -> Union[float, int, np.ndarray]: - r_close = self.env.data.get_joint_qpos("r_close") - return np.hstack([self.env.data.mocap_pos.flatten() / self.env.action_scale, r_close]) - - @property - def current_vel(self) -> Union[float, int, np.ndarray, Tuple]: - raise NotImplementedError("Velocity cannot be retrieved.") - - @property - def goal_pos(self) -> Union[float, int, np.ndarray, Tuple]: - raise ValueError("Goal position is not available and has to be learnt based on the environment.") - - @property - def dt(self) -> Union[float, int]: - return self.env.dt diff --git a/alr_envs/meta/goal_object_change_mp_wrapper.py b/alr_envs/meta/goal_object_change_mp_wrapper.py index 1a6f57e..dcc0777 100644 --- a/alr_envs/meta/goal_object_change_mp_wrapper.py +++ b/alr_envs/meta/goal_object_change_mp_wrapper.py @@ -1,11 +1,9 @@ -from typing import Tuple, Union - import numpy as np -from alr_envs.black_box.raw_interface_wrapper import RawInterfaceWrapper +from alr_envs.meta.base_metaworld_mp_wrapper import BaseMetaworldMPWrapper -class MPWrapper(RawInterfaceWrapper): +class MPWrapper(BaseMetaworldMPWrapper): """ This Wrapper is for environments where merely the goal changes in the beginning and no secondary objects or end effectors are altered at the start of an episode. @@ -49,20 +47,3 @@ class MPWrapper(RawInterfaceWrapper): # Goal [True] * 3, # goal position ]) - - @property - def current_pos(self) -> Union[float, int, np.ndarray]: - r_close = self.env.data.get_joint_qpos("r_close") - return np.hstack([self.env.data.mocap_pos.flatten() / self.env.action_scale, r_close]) - - @property - def current_vel(self) -> Union[float, int, np.ndarray, Tuple]: - raise NotImplementedError("Velocity cannot be retrieved.") - - @property - def goal_pos(self) -> Union[float, int, np.ndarray, Tuple]: - raise ValueError("Goal position is not available and has to be learnt based on the environment.") - - @property - def dt(self) -> Union[float, int]: - return self.env.dt diff --git a/alr_envs/meta/object_change_mp_wrapper.py b/alr_envs/meta/object_change_mp_wrapper.py index 07e88dc..f2daec7 100644 --- a/alr_envs/meta/object_change_mp_wrapper.py +++ b/alr_envs/meta/object_change_mp_wrapper.py @@ -1,11 +1,9 @@ -from typing import Tuple, Union - import numpy as np -from alr_envs.black_box.raw_interface_wrapper import RawInterfaceWrapper +from alr_envs.meta.base_metaworld_mp_wrapper import BaseMetaworldMPWrapper -class MPWrapper(RawInterfaceWrapper): +class MPWrapper(BaseMetaworldMPWrapper): """ This Wrapper is for environments where merely the goal changes in the beginning and no secondary objects or end effectors are altered at the start of an episode. @@ -49,20 +47,3 @@ class MPWrapper(RawInterfaceWrapper): # Goal [True] * 3, # goal position ]) - - @property - def current_pos(self) -> Union[float, int, np.ndarray]: - r_close = self.env.data.get_joint_qpos("r_close") - return np.hstack([self.env.data.mocap_pos.flatten() / self.env.action_scale, r_close]) - - @property - def current_vel(self) -> Union[float, int, np.ndarray, Tuple]: - raise NotImplementedError("Velocity cannot be retrieved.") - - @property - def goal_pos(self) -> Union[float, int, np.ndarray, Tuple]: - raise ValueError("Goal position is not available and has to be learnt based on the environment.") - - @property - def dt(self) -> Union[float, int]: - return self.env.dt diff --git a/alr_envs/utils/__init__.py b/alr_envs/utils/__init__.py index a96d882..531c3dd 100644 --- a/alr_envs/utils/__init__.py +++ b/alr_envs/utils/__init__.py @@ -20,7 +20,7 @@ def make_dmc( environment_kwargs: dict = {}, time_limit: Union[None, float] = None, channels_first: bool = True - ): +): # Adopted from: https://github.com/denisyarats/dmc2gym/blob/master/dmc2gym/__init__.py # License: MIT # Copyright (c) 2020 Denis Yarats @@ -32,12 +32,10 @@ def make_dmc( env_id = f'dmc_{domain_name}_{task_name}_{seed}-v1' if from_pixels: - assert not visualize_reward, 'cannot use visualize reward when learning from pixels' + assert not visualize_reward, 'Cannot use visualize reward when learning from pixels.' - # shorten episode length - if episode_length is None: - # Default lengths for benchmarking suite is 1000 and for manipulation tasks 250 - episode_length = 250 if domain_name == "manipulation" else 1000 + # Default lengths for benchmarking suite is 1000 and for manipulation tasks 250 + episode_length = episode_length or (250 if domain_name == "manipulation" else 1000) max_episode_steps = (episode_length + frame_skip - 1) // frame_skip if env_id not in gym.envs.registry.env_specs: @@ -61,7 +59,7 @@ def make_dmc( camera_id=camera_id, frame_skip=frame_skip, channels_first=channels_first, - ), + ), max_episode_steps=max_episode_steps, - ) + ) return gym.make(env_id) diff --git a/alr_envs/utils/make_env_helpers.py b/alr_envs/utils/make_env_helpers.py index 52ee3a1..8317fda 100644 --- a/alr_envs/utils/make_env_helpers.py +++ b/alr_envs/utils/make_env_helpers.py @@ -8,7 +8,7 @@ from gym.envs.registration import EnvSpec, registry from gym.wrappers import TimeAwareObservation from alr_envs.black_box.black_box_wrapper import BlackBoxWrapper -from alr_envs.black_box.controller.controller_factory import get_controller +from alr_envs.black_box.factory.controller_factory import get_controller from alr_envs.black_box.factory.basis_generator_factory import get_basis_generator from alr_envs.black_box.factory.phase_generator_factory import get_phase_generator from alr_envs.black_box.factory.trajectory_generator_factory import get_trajectory_generator @@ -43,11 +43,7 @@ def make_rank(env_id: str, seed: int, rank: int = 0, return_callable=True, **kwa def make(env_id, seed, **kwargs): - # This access is required to allow for nested dict updates - spec = registry.get(env_id) - all_kwargs = deepcopy(spec.kwargs) - nested_update(all_kwargs, kwargs) - return _make(env_id, seed, **all_kwargs) + return _make(env_id, seed, **kwargs) def _make(env_id: str, seed, **kwargs): @@ -62,12 +58,25 @@ def _make(env_id: str, seed, **kwargs): Returns: Gym environment """ - if any(deprec in env_id for deprec in ["DetPMP", "detpmp"]): - warnings.warn("DetPMP is deprecated and converted to ProMP") - env_id = env_id.replace("DetPMP", "ProMP") - env_id = env_id.replace("detpmp", "promp") + + # 'dmc:domain-task' + # 'gym:name-vX' + # 'meta:name-vX' + # 'meta:bb:name-vX' + # 'hand:name-vX' + # 'name-vX' + # 'bb:name-vX' + # + # env_id.split(':') + # if 'dmc' : try: + # This access is required to allow for nested dict updates for BB envs + spec = registry.get(env_id) + all_kwargs = deepcopy(spec.kwargs) + nested_update(all_kwargs, kwargs) + kwargs = all_kwargs + # Add seed to kwargs in case it is a predefined gym+dmc hybrid environment. if env_id.startswith("dmc"): kwargs.update({"seed": seed}) @@ -77,22 +86,25 @@ def _make(env_id: str, seed, **kwargs): env.seed(seed) env.action_space.seed(seed) env.observation_space.seed(seed) - except gym.error.Error: + except (gym.error.Error, AttributeError): # MetaWorld env import metaworld if env_id in metaworld.ML1.ENV_NAMES: env = metaworld.envs.ALL_V2_ENVIRONMENTS_GOAL_OBSERVABLE[env_id + "-goal-observable"](seed=seed, **kwargs) + # setting this avoids generating the same initialization after each reset env._freeze_rand_vec = False + env.seeded_rand_vec = True + # Manually set spec, as metaworld environments are not registered via gym env.unwrapped.spec = EnvSpec(env_id) # Set Timelimit based on the maximum allowed path length of the environment env = gym.wrappers.TimeLimit(env, max_episode_steps=env.max_path_length) - env.seed(seed) - env.action_space.seed(seed) - env.observation_space.seed(seed) - env.goal_space.seed(seed) + # env.seed(seed) + # env.action_space.seed(seed) + # env.observation_space.seed(seed) + # env.goal_space.seed(seed) else: # DMC diff --git a/setup.py b/setup.py index e99b393..3b78401 100644 --- a/setup.py +++ b/setup.py @@ -1,10 +1,10 @@ import itertools -from setuptools import setup +from setuptools import setup, find_packages # Environment-specific dependencies for dmc and metaworld extras = { - "dmc": ["dm_control"], + "dmc": ["dm_control==1.0.1"], "meta": ["metaworld @ git+https://github.com/rlworkgroup/metaworld.git@master#egg=metaworld"], "mujoco": ["mujoco==2.2.0", "imageio>=2.14.1"], } @@ -16,12 +16,28 @@ extras["all"] = list(set(itertools.chain.from_iterable(map(lambda group: extras[ setup( author='Fabian Otto, Onur Celik, Marcel Sandermann, Maximilian Huettenrauch', name='simple_gym', - version='0.0.1', - packages=['alr_envs', 'alr_envs.alr', 'alr_envs.open_ai', 'alr_envs.dmc', 'alr_envs.meta', 'alr_envs.utils'], + version='0.1', + classifiers=[ + # Python 3.6 is minimally supported (only with basic gym environments and API) + "Programming Language :: Python :: 3", + "Programming Language :: Python :: 3.7", + "Programming Language :: Python :: 3.8", + "Programming Language :: Python :: 3.9", + "Programming Language :: Python :: 3.10", + ], + extras_require=extras, install_requires=[ - 'gym', + 'gym>=0.24.0', "mujoco_py<2.2,>=2.1", ], + packages=[package for package in find_packages() if package.startswith("alr_envs")], + # packages=['alr_envs', 'alr_envs.alr', 'alr_envs.open_ai', 'alr_envs.dmc', 'alr_envs.meta', 'alr_envs.utils'], + package_data={ + "alr_envs": [ + "alr/mujoco/*/assets/*.xml", + ] + }, + python_requires=">=3.6", url='https://github.com/ALRhub/alr_envs/', # license='AGPL-3.0 license', author_email='', diff --git a/test/test_envs.py b/test/test_bb_envs.py similarity index 95% rename from test/test_envs.py rename to test/test_bb_envs.py index b3263ba..189dbb6 100644 --- a/test/test_envs.py +++ b/test/test_bb_envs.py @@ -34,12 +34,7 @@ class TestMPEnvironments(unittest.TestCase): obs = env.reset() self._verify_observations(obs, env.observation_space, "reset()") - length = env.spec.max_episode_steps - if iterations is None: - if length is None: - iterations = 1 - else: - iterations = length + iterations = iterations or (env.spec.max_episode_steps or 1) # number of samples(multiple environment steps) for i in range(iterations): @@ -76,7 +71,7 @@ class TestMPEnvironments(unittest.TestCase): traj2 = self._run_env(env_id, seed=seed) for i, time_step in enumerate(zip(*traj1, *traj2)): obs1, rwd1, done1, obs2, rwd2, done2 = time_step - self.assertTrue(np.array_equal(obs1, obs2), f"Observations [{i}] {obs1} and {obs2} do not match.") + self.assertTrue(np.allclose(obs1, obs2), f"Observations [{i}] {obs1} and {obs2} do not match.") self.assertEqual(rwd1, rwd2, f"Rewards [{i}] {rwd1} and {rwd2} do not match.") self.assertEqual(done1, done2, f"Dones [{i}] {done1} and {done2} do not match.") diff --git a/test/test_dmc_envs.py b/test/test_dmc_envs.py index a7cd9be..d367f49 100644 --- a/test/test_dmc_envs.py +++ b/test/test_dmc_envs.py @@ -36,12 +36,7 @@ class TestStepDMCEnvironments(unittest.TestCase): obs = env.reset() self._verify_observations(obs, env.observation_space, "reset()") - length = env.spec.max_episode_steps - if iterations is None: - if length is None: - iterations = 1 - else: - iterations = length + iterations = iterations or (env.spec.max_episode_steps or 1) # number of samples(multiple environment steps) for i in range(iterations): diff --git a/test/test_metaworld_envs.py b/test/test_metaworld_envs.py index b84ba3c..bfe6a9e 100644 --- a/test/test_metaworld_envs.py +++ b/test/test_metaworld_envs.py @@ -35,12 +35,7 @@ class TestStepMetaWorlEnvironments(unittest.TestCase): obs = env.reset() self._verify_observations(obs, env.observation_space, "reset()") - length = env.max_path_length - if iterations is None: - if length is None: - iterations = 1 - else: - iterations = length + iterations = iterations or (env.spec.max_episode_steps or 1) # number of samples(multiple environment steps) for i in range(iterations):