Compare commits

...

46 Commits

Author SHA1 Message Date
Dominik Roth
da1bced018
Merge pull request #107 from maxmunzel/patch-1
Add toml to build requirements
2024-04-17 19:15:04 +02:00
maxmunzel
11651088ed
Add toml to build requirements
Without this change `pip install .` fails in a fresh conda env (tested with both python 3.7 and 3.11 on my mac).
2024-04-14 12:57:09 +02:00
Onur
758aa534ed
Merge pull request #100 from D-o-d-o-x/bruce_port_envs
Port Additions by Bruce to current version
2024-04-08 18:29:29 +02:00
20d0f97135 Compied new docs 2024-03-20 11:30:03 +01:00
072cbe978c Fixed typo in docs (markvoian) 2024-03-20 11:29:01 +01:00
89526c3454 Updated docs to include descriptions of the newly added env variants 2024-03-20 11:27:02 +01:00
4a19cd8270 Fix: Missed rename Markovian -> Markov in import 2024-03-20 11:10:53 +01:00
f242cc7d18 Fix typo: Missing comma 2024-03-20 11:10:05 +01:00
f972dabf7d Ensure TableTennisMarkov is imported 2024-03-20 11:08:52 +01:00
a33640abf6 Merge branch 'master' into bruce_port_envs 2024-03-20 11:06:30 +01:00
9960201cb6 Rename new envs (shorten Markovian to Markov) 2024-03-20 11:04:16 +01:00
319578da15 Merge branch 'release' of github.com:ALRhub/fancy_gym 2024-03-20 10:29:25 +01:00
Onur
2144eff45b
Merge pull request #96 from D-o-d-o-x/better_versioning
Better Versioning
2024-03-15 16:42:20 +01:00
Onur
8ea87f5b7b
Merge pull request #97 from ALRhub/pr_v0.3.0
New Release: 0.3.0
2024-03-15 16:41:19 +01:00
Onur
11d4fe9ba2
Merge pull request #98 from D-o-d-o-x/fix_readme_links
Replace links to Docs in README with final ones
2024-03-15 16:40:04 +01:00
Onur
fa72c3791c
Merge pull request #99 from D-o-d-o-x/fix_automatic_render
Fix: Some fancy envs not following gym spec regarding rendering behavior
2024-03-15 16:39:42 +01:00
Onur
7765d602b9
Merge pull request #102 from D-o-d-o-x/fix_docs_metaworld_version
Fix: Docs reference wrong version for metaworld
2024-03-15 16:38:47 +01:00
5be2df1cea Compile new docs 2024-03-14 18:34:02 +01:00
27d3c447ab Merge branch 'fix_docs_metaworld_version' into pr_v0.3.0 2024-03-14 18:33:23 +01:00
4efdcf0c5b Fix version referenced for metaworld in docs 2024-03-14 18:31:52 +01:00
688712004d Recompiled docs 2024-03-14 15:58:08 +01:00
59015bbd0e Merge branch 'fix_automatic_render' into pr_v0.3.0 2024-03-14 15:51:49 +01:00
7d8e7c3f18 Adapt examples to new rendering behavior 2024-03-14 15:50:42 +01:00
e8171207f0 Merge branch 'fix_readme_links' into pr_v0.3.0 2024-02-16 16:48:42 +01:00
1008c84a4b Merge branch 'fix_automatic_render' into pr_v0.3.0 2024-02-16 16:48:27 +01:00
1936f8bf98 Merge branch 'master' into bruce_port_envs 2024-02-10 15:34:05 +01:00
a32343807f Only do auto-rendering for render_mode = human
(https://gymnasium.farama.org/api/env/#gymnasium.Env.render)
2024-02-10 14:11:54 +01:00
e8fb90f1ae Implement automatic rendering to all fancy envs (implementuing new gym spec regarding rendering) 2024-02-10 14:03:20 +01:00
a1e0acf2c9 Replace all links to temporary docs hosting with final ones 2024-02-10 13:18:51 +01:00
ad2f20a557 Add MP-Wrapper for new TT variants with random init robot position 2024-02-10 11:28:17 +01:00
41c5ca1120 Fix: Forgot 'fi' to end if clause in bash snippet 2024-02-10 11:13:29 +01:00
e2a805b74f Fix: Forgot 'fi' to end if clause in bash snippet 2024-02-10 11:10:14 +01:00
4d0ef519d0 Ensure following steps are skipped if any one fails 2024-02-10 11:07:02 +01:00
31b9182b53 Fix: Workflow python envs missing toml dependency 2024-02-10 10:48:01 +01:00
3c7fdc8d5b Update workflows to also validate version number consistency 2024-02-10 10:13:37 +01:00
259b13baa1 Version in pyproject.toml is now single source of truth 2024-02-10 10:13:17 +01:00
5aec4f835f Incremetn version 2024-02-10 10:12:21 +01:00
9faaae4785 Fix: New TT variants were registered outside of fancy NS 2024-02-04 17:30:12 +01:00
642bf8761f Fix: BP was not returning new infos (smoothness metrics) 2024-02-02 17:00:23 +01:00
c9ea8cb167 BugFix: Missing new get_initial_robot_state method in TT 2024-01-28 12:56:53 +01:00
3bc0a23ec2 BugFix: DId not pass kwargs down in new TT envs 2024-01-28 12:54:49 +01:00
db8221ebb2 Fix: Accidentally removed delay_bound & tau_bound from TT_utils 2024-01-28 12:45:50 +01:00
a67637c714 Register new env variants (Bruce Vers) 2024-01-28 12:37:53 +01:00
9fce6fff42 Ported new HopperJump Rew to master 2024-01-28 12:32:52 +01:00
1372a596b5 Ported Markovian Version of TableTennis to master 2024-01-28 12:29:43 +01:00
6b59a354d7 Added new smoothness metric to BP 2024-01-28 12:16:15 +01:00
75 changed files with 1198 additions and 690 deletions

View File

@ -1,26 +0,0 @@
name: Ensure Tagged Commits on Release
on:
pull_request:
branches:
- release
jobs:
check_tag:
runs-on: ubuntu-latest
steps:
- name: Check out code
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Check if base commit of PR is tagged
run: |
BASE_COMMIT=$(jq -r .pull_request.base.sha < "$GITHUB_EVENT_PATH")
TAG=$(git tag --contains $BASE_COMMIT)
if [ -z "$TAG" ]; then
echo "Base commit of PR is not tagged. PRs onto release must be tagged with the version number."
exit 1
fi
echo "Base commit of PR is tagged. Check passed."

View File

@ -0,0 +1,52 @@
name: Ensure Version Consistency on PR to Release
on:
pull_request:
branches:
- release
jobs:
check_version_and_tag:
runs-on: ubuntu-latest
strategy:
fail-fast: true # Terminate the job immediately if any step fails
steps:
- name: Check out code
uses: actions/checkout@v4
with:
fetch-depth: 0 # Necessary to fetch all tags for comparison
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.x'
- name: Install dependencies
run: |
python -m pip install toml
- name: Extract version from pyproject.toml
run: |
echo "Extracting version from pyproject.toml"
VERSION=$(python -c 'import toml; print(toml.load("pyproject.toml")["project"]["version"])')
echo "Version in pyproject.toml is $VERSION"
echo "VERSION=$VERSION" >> $GITHUB_ENV
- name: Get tag for the PR's head commit
run: |
PR_HEAD_SHA=$(jq -r .pull_request.head.sha < "$GITHUB_EVENT_PATH")
TAG=$(git tag --contains $PR_HEAD_SHA)
echo "Tag on PR's head commit is $TAG"
echo "TAG=$TAG" >> $GITHUB_ENV
- name: Compare version and tag
run: |
if [ -z "$TAG" ]; then
echo "Head commit of PR is not tagged. Ensure the head commit of PRs onto release is tagged with the version number."
exit 1
elif [ "$VERSION" != "$TAG" ]; then
echo "Version in pyproject.toml ($VERSION) does not match the git tag ($TAG)."
exit 1
else
echo "Version and git tag match. Check passed."
fi

View File

@ -8,6 +8,8 @@ on:
jobs:
publish:
name: Publish to PyPI
strategy:
fail-fast: true # Terminate the job immediately if any step fails
runs-on: ubuntu-latest
steps:
- name: Check out code
@ -15,19 +17,24 @@ jobs:
with:
fetch-depth: 0 # This fetches all history for all branches and tags
- name: Check if commit is tagged
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.x"
- name: Validate version against tag
run: |
VERSION=$(python -c 'import toml; print(toml.load("pyproject.toml")["project"]["version"])')
TAG=$(git tag --contains HEAD)
if [ -z "$TAG" ]; then
echo "Commit is not tagged. Failing the workflow."
exit 1
fi
echo "Commit is tagged. Proceeding with the workflow."
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.x"
if [ "$VERSION" != "$TAG" ]; then
echo "Version in pyproject.toml ($VERSION) does not match the git tag ($TAG). Failing the workflow."
exit 1
fi
echo "Version and commit tag match. Proceeding with the workflow."
- name: Install pypa/build/setuptools/twine
run: >-
@ -36,9 +43,6 @@ jobs:
build setuptools twine
--user
- name: Prevent fallback onto setup.py
run: rm setup.py
- name: Build a binary wheel and a source tarball
run: python3 -m build

View File

@ -10,25 +10,25 @@ Built upon the foundation of [Gymnasium](https://gymnasium.farama.org) (a mainta
**Key Features**:
- **New Challenging Environments**: `fancy_gym` includes several new environments ([Panda Box Pushing](https://dominik-roth.eu/fancy/envs/fancy/mujoco.html#box-pushing), [Table Tennis](https://dominik-roth.eu/fancy/envs/fancy/mujoco.html#table-tennis), [etc.](https://dominik-roth.eu/fancy/envs/fancy/index.html)) that present a higher degree of difficulty, pushing the boundaries of reinforcement learning research.
- **New Challenging Environments**: `fancy_gym` includes several new environments ([Panda Box Pushing](https://alrhub.github.io/fancy_gym/envs/fancy/mujoco.html#box-pushing), [Table Tennis](https://alrhub.github.io/fancy_gym/envs/fancy/mujoco.html#table-tennis), [etc.](https://alrhub.github.io/fancy_gym/envs/fancy/index.html)) that present a higher degree of difficulty, pushing the boundaries of reinforcement learning research.
- **Support for Movement Primitives**: `fancy_gym` supports a range of movement primitives (MPs), including Dynamic Movement Primitives (DMPs), Probabilistic Movement Primitives (ProMP), and Probabilistic Dynamic Movement Primitives (ProDMP).
- **Upgrade to Movement Primitives**: With our framework, its straightforward to transform standard Gymnasium environments into environments that support movement primitives.
- **Benchmark Suite Compatibility**: `fancy_gym` makes it easy to access renowned benchmark suites such as [DeepMind Control](dominik-roth.eu/fancy/envs/dmc.html)
and [Metaworld](https://dominik-roth.eu/fancy/envs/meta.html), whether you want to use them in the regular step-based setting or using MPs.
- **Contribute Your Own Environments**: If youre inspired to create custom gym environments, both step-based and with movement primitives, this [guide](https://dominik-roth.eu/fancy/guide/upgrading_envs.html) will assist you. We encourage and highly appreciate submissions via PRs to integrate these environments into `fancy_gym`.
- **Benchmark Suite Compatibility**: `fancy_gym` makes it easy to access renowned benchmark suites such as [DeepMind Control](https://alrhub.github.io/fancy_gym/envs/dmc.html)
and [Metaworld](https://alrhub.github.io/fancy_gym/envs/meta.html), whether you want to use them in the regular step-based setting or using MPs.
- **Contribute Your Own Environments**: If youre inspired to create custom gym environments, both step-based and with movement primitives, this [guide](https://alrhub.github.io/fancy_gym/guide/upgrading_envs.html) will assist you. We encourage and highly appreciate submissions via PRs to integrate these environments into `fancy_gym`.
## Quickstart Guide
| &#x26A0; We recommend installing `fancy_gym` into a virtual environment as provided by [venv](https://docs.python.org/3/library/venv.html), [Poetry](https://python-poetry.org/) or [Conda](https://docs.conda.io/en/latest/). |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
Install via pip [or use an alternative installation method](https://dominik-roth.eu/fancy/guide/installation.html)
Install via pip [or use an alternative installation method](https://alrhub.github.io/fancy_gym/guide/installation.html)
```bash
pip install 'fancy_gym[all]'
```
Try out one of our step-based environments [or explore our other envs](https://dominik-roth.eu/fancy/envs/fancy/index.html)
Try out one of our step-based environments [or explore our other envs](https://alrhub.github.io/fancy_gym/envs/fancy/index.html)
```python
import gymnasium as gym
@ -48,7 +48,7 @@ Try out one of our step-based environments [or explore our other envs](https://d
observation, info = env.reset()
```
Explore the MP-based variant [or learn more about Movement Primitives (MPs)](https://dominik-roth.eu/fancy/guide/episodic_rl.html)
Explore the MP-based variant [or learn more about Movement Primitives (MPs)](https://alrhub.github.io/fancy_gym/guide/episodic_rl.html)
```python
import gymnasium as gym
@ -66,7 +66,7 @@ Explore the MP-based variant [or learn more about Movement Primitives (MPs)](htt
## Documentation
Documentation for `fancy_gym` can be found [here](https://dominik-roth.eu/fancy); Usage Examples can be found [here](https://dominik-roth.eu/fancy/examples/general.html).
Documentation for `fancy_gym` can be found [here](https://alrhub.github.io/fancy_gym/); Usage Examples can be found [here](https://alrhub.github.io/fancy_gym/examples/general.html).
## Citing the Project

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -1,4 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
config: 28ec069496fc0ad05c8b9641549626a6
config: 36919d67c12a677d3f16f60d980b0313
tags: 645f666f9bcd5a90fca523b33c5a78b7

View File

@ -3,7 +3,7 @@
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>fancy_gym.envs.registry &mdash; Fancy Gym 0.2 documentation</title>
<title>fancy_gym.envs.registry &mdash; Fancy Gym 0.3.0 documentation</title>
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/style.css" type="text/css" />
@ -38,7 +38,7 @@
<img src="../../../_static/icon.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
0.2
0.3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">

View File

@ -3,7 +3,7 @@
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Overview: module code &mdash; Fancy Gym 0.2 documentation</title>
<title>Overview: module code &mdash; Fancy Gym 0.3.0 documentation</title>
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/style.css" type="text/css" />
@ -38,7 +38,7 @@
<img src="../_static/icon.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
0.2
0.3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">

View File

@ -18,6 +18,12 @@ A composite reward function serves as the performance metric for the RL system.
Variations of this environment are available, differing in reward structures and the optionality of randomizing the box's initial position. These variations are purposefully designed to challenge RL algorithms, enhancing their generalization and adaptation capabilities. Temporally sparse environments only provide a reward at the last timestep. Spatially sparse environments only provide a reward, if the goal is almost reached, the box is close enought to the goal and somewhat correctly aligned.
These environments all provide smoothness metrics as part of the return infos:
- mean_squared_jerk: Averages the square of jerk (rate of acceleration change) across the motion. Lower values indicate smoother movement.
- maximum_jerk: Identifies the highest jerk value encountered.
- dimensionless_jerk: Normalizes the summed squared jerk over the motion's duration and peak velocity, offering a scale-independent metric of smoothness
| Name | Description | Horizon | Action Dimension | Observation Dimension |
| ------------------------------------------ | -------------------------------------------------------------------- | ------- | ---------------- | --------------------- |
| `fancy/BoxPushingDense-v0` | Custom Box-pushing task with dense rewards | 100 | 3 | 13 |
@ -49,6 +55,9 @@ Variations of the table tennis environment are available to cater to different r
| `fancy/TableTennisWind-v0` | Table Tennis task with wind effects, based on a custom environment for table tennis | 350 | 7 | 19 |
| `fancy/TableTennisGoalSwitching-v0` | Table Tennis task with goal switching, based on a custom environment for table tennis | 350 | 7 | 19 |
| `fancy/TableTennisWindReplan-v0` | Table Tennis task with wind effects and replanning, based on a custom environment for table tennis | 350 | 7 | 19 |
| `fancy/TableTennisRndRobot-v0` | Table Tennis task with random initial robot joint positions \* | 350 | 7 | 19 |
\* Random initialization of robot joint position and speed can be enabled by providing `random_pos_scale` / `random_vel_scale` to make. `TableTennisRndRobot` is equivalent to `TableTennis4D` except, that `random_pos_scale` is set to 0.1 instead of 0 per default.
---
@ -89,8 +98,9 @@ A successful throw in this task is determined by the ball landing in the cup at
| `fancy/Reacher5dSparse-v0` | Sparse Reacher task with 5 links, based on Gymnasium's `gym.envs.mujoco.ReacherEnv` | 200 | 5 | 20 |
| `fancy/Reacher7d-v0` | Reacher task with 7 links, based on Gymnasium's `gym.envs.mujoco.ReacherEnv` | 200 | 7 | 22 |
| `fancy/Reacher7dSparse-v0` | Sparse Reacher task with 7 links, based on Gymnasium's `gym.envs.mujoco.ReacherEnv` | 200 | 7 | 22 |
| `fancy/HopperJumpSparse-v0` | Hopper Jump task with sparse rewards, based on Gymnasium's `gym.envs.mujoco.Hopper` | 250 | 3 | 15 / 16\* |
| `fancy/HopperJump-v0` | Hopper Jump task with continuous rewards, based on Gymnasium's `gym.envs.mujoco.Hopper` | 250 | 3 | 15 / 16\* |
| `fancy/HopperJumpMarkov-v0` | `fancy/HopperJump-v0`, but with an alternative reward that is markovian. | 250 | 3 | 15 / 16\* |
| `fancy/HopperJumpSparse-v0` | Hopper Jump task with sparse rewards, based on Gymnasium's `gym.envs.mujoco.Hopper` | 250 | 3 | 15 / 16\* |
| `fancy/AntJump-v0` | Ant Jump task, based on Gymnasium's `gym.envs.mujoco.Ant` | 200 | 8 | 119 |
| `fancy/HalfCheetahJump-v0` | HalfCheetah Jump task, based on Gymnasium's `gym.envs.mujoco.HalfCheetah` | 100 | 6 | 112 |
| `fancy/HopperJumpOnBox-v0` | Hopper Jump on Box task, based on Gymnasium's `gym.envs.mujoco.Hopper` | 250 | 4 | 16 / 100\* |

View File

@ -32,7 +32,7 @@ since they are not avaible on PyPI yet. Install metaworld via
.. code:: bash
pip install metaworld@git+https://github.com/Farama-Foundation/Metaworld.git@d155d0051630bb365ea6a824e02c66c068947439#egg=metaworld
pip install metaworld@git+https://github.com/Farama-Foundation/Metaworld.git@c822f28f582ba1ad49eb5dcf61016566f28003ba#egg=metaworld
Installation from master
~~~~~~~~~~~~~~~~~~~~~~~~
@ -70,4 +70,4 @@ Metaworld has to be installed manually with
.. code:: bash
pip install metaworld@git+https://github.com/Farama-Foundation/Metaworld.git@d155d0051630bb365ea6a824e02c66c068947439#egg=metaworld
pip install metaworld@git+https://github.com/Farama-Foundation/Metaworld.git@c822f28f582ba1ad49eb5dcf61016566f28003ba#egg=metaworld

View File

@ -1,6 +1,6 @@
var DOCUMENTATION_OPTIONS = {
URL_ROOT: document.getElementById("documentation_options").getAttribute('data-url_root'),
VERSION: '0.2',
VERSION: '0.3.0',
LANGUAGE: 'en',
COLLAPSE_INDEX: false,
BUILDER: 'html',

View File

@ -4,7 +4,7 @@
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>API &mdash; Fancy Gym 0.2 documentation</title>
<title>API &mdash; Fancy Gym 0.3.0 documentation</title>
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/style.css" type="text/css" />
@ -41,7 +41,7 @@
<img src="_static/icon.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
0.2
0.3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">

View File

@ -4,7 +4,7 @@
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>DeepMind Control (DMC) &mdash; Fancy Gym 0.2 documentation</title>
<title>DeepMind Control (DMC) &mdash; Fancy Gym 0.3.0 documentation</title>
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/style.css" type="text/css" />
@ -41,7 +41,7 @@
<img src="../_static/icon.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
0.2
0.3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">

View File

@ -4,7 +4,7 @@
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>AirHockey &mdash; Fancy Gym 0.2 documentation</title>
<title>AirHockey &mdash; Fancy Gym 0.3.0 documentation</title>
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../_static/style.css" type="text/css" />
@ -41,7 +41,7 @@
<img src="../../_static/icon.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
0.2
0.3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">

View File

@ -4,7 +4,7 @@
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Classic Control &mdash; Fancy Gym 0.2 documentation</title>
<title>Classic Control &mdash; Fancy Gym 0.3.0 documentation</title>
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../_static/style.css" type="text/css" />
@ -41,7 +41,7 @@
<img src="../../_static/icon.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
0.2
0.3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">

View File

@ -4,7 +4,7 @@
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Fancy &mdash; Fancy Gym 0.2 documentation</title>
<title>Fancy &mdash; Fancy Gym 0.3.0 documentation</title>
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../_static/style.css" type="text/css" />
@ -41,7 +41,7 @@
<img src="../../_static/icon.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
0.2
0.3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">

View File

@ -4,7 +4,7 @@
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Mujoco &mdash; Fancy Gym 0.2 documentation</title>
<title>Mujoco &mdash; Fancy Gym 0.3.0 documentation</title>
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../_static/style.css" type="text/css" />
@ -41,7 +41,7 @@
<img src="../../_static/icon.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
0.2
0.3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
@ -135,6 +135,12 @@
<p>The observation space includes the sine and cosine values of the robotic joint angles, their velocities, and quaternion orientations for the end-effector and the box. The action space describes the applied torques for each joint.</p>
<p>A composite reward function serves as the performance metric for the RL system. It accounts for the distance to the goal, the boxs orientation, maintaining a rod within the box, achieving the rods desired orientation, and includes penalties for joint position and velocity limit violations, as well as an action cost for energy expenditure.</p>
<p>Variations of this environment are available, differing in reward structures and the optionality of randomizing the boxs initial position. These variations are purposefully designed to challenge RL algorithms, enhancing their generalization and adaptation capabilities. Temporally sparse environments only provide a reward at the last timestep. Spatially sparse environments only provide a reward, if the goal is almost reached, the box is close enought to the goal and somewhat correctly aligned.</p>
<p>These environments all provide smoothness metrics as part of the return infos:</p>
<ul class="simple">
<li><p>mean_squared_jerk: Averages the square of jerk (rate of acceleration change) across the motion. Lower values indicate smoother movement.</p></li>
<li><p>maximum_jerk: Identifies the highest jerk value encountered.</p></li>
<li><p>dimensionless_jerk: Normalizes the summed squared jerk over the motions duration and peak velocity, offering a scale-independent metric of smoothness</p></li>
</ul>
<table class="docutils align-default">
<thead>
<tr class="row-odd"><th class="head"><p>Name</p></th>
@ -228,8 +234,15 @@
<td><p>7</p></td>
<td><p>19</p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre">fancy/TableTennisRndRobot-v0</span></code></p></td>
<td><p>Table Tennis task with random initial robot joint positions *</p></td>
<td><p>350</p></td>
<td><p>7</p></td>
<td><p>19</p></td>
</tr>
</tbody>
</table>
<p>* Random initialization of robot joint position and speed can be enabled by providing <code class="docutils literal notranslate"><span class="pre">random_pos_scale</span></code> / <code class="docutils literal notranslate"><span class="pre">random_vel_scale</span></code> to make. <code class="docutils literal notranslate"><span class="pre">TableTennisRndRobot</span></code> is equivalent to <code class="docutils literal notranslate"><span class="pre">TableTennis4D</span></code> except, that <code class="docutils literal notranslate"><span class="pre">random_pos_scale</span></code> is set to 0.1 instead of 0 per default.</p>
</section>
<hr class="docutils" />
<section id="beer-pong">
@ -335,49 +348,55 @@
<td><p>7</p></td>
<td><p>22</p></td>
</tr>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre">fancy/HopperJump-v0</span></code></p></td>
<td><p>Hopper Jump task with continuous rewards, based on Gymnasiums <code class="docutils literal notranslate"><span class="pre">gym.envs.mujoco.Hopper</span></code></p></td>
<td><p>250</p></td>
<td><p>3</p></td>
<td><p>15 / 16*</p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre">fancy/HopperJumpMarkov-v0</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">fancy/HopperJump-v0</span></code>, but with an alternative reward that is markovian.</p></td>
<td><p>250</p></td>
<td><p>3</p></td>
<td><p>15 / 16*</p></td>
</tr>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre">fancy/HopperJumpSparse-v0</span></code></p></td>
<td><p>Hopper Jump task with sparse rewards, based on Gymnasiums <code class="docutils literal notranslate"><span class="pre">gym.envs.mujoco.Hopper</span></code></p></td>
<td><p>250</p></td>
<td><p>3</p></td>
<td><p>15 / 16*</p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre">fancy/HopperJump-v0</span></code></p></td>
<td><p>Hopper Jump task with continuous rewards, based on Gymnasiums <code class="docutils literal notranslate"><span class="pre">gym.envs.mujoco.Hopper</span></code></p></td>
<td><p>250</p></td>
<td><p>3</p></td>
<td><p>15 / 16*</p></td>
</tr>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre">fancy/AntJump-v0</span></code></p></td>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre">fancy/AntJump-v0</span></code></p></td>
<td><p>Ant Jump task, based on Gymnasiums <code class="docutils literal notranslate"><span class="pre">gym.envs.mujoco.Ant</span></code></p></td>
<td><p>200</p></td>
<td><p>8</p></td>
<td><p>119</p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre">fancy/HalfCheetahJump-v0</span></code></p></td>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre">fancy/HalfCheetahJump-v0</span></code></p></td>
<td><p>HalfCheetah Jump task, based on Gymnasiums <code class="docutils literal notranslate"><span class="pre">gym.envs.mujoco.HalfCheetah</span></code></p></td>
<td><p>100</p></td>
<td><p>6</p></td>
<td><p>112</p></td>
</tr>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre">fancy/HopperJumpOnBox-v0</span></code></p></td>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre">fancy/HopperJumpOnBox-v0</span></code></p></td>
<td><p>Hopper Jump on Box task, based on Gymnasiums <code class="docutils literal notranslate"><span class="pre">gym.envs.mujoco.Hopper</span></code></p></td>
<td><p>250</p></td>
<td><p>4</p></td>
<td><p>16 / 100*</p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre">fancy/HopperThrow-v0</span></code></p></td>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre">fancy/HopperThrow-v0</span></code></p></td>
<td><p>Hopper Throw task, based on Gymnasiums <code class="docutils literal notranslate"><span class="pre">gym.envs.mujoco.Hopper</span></code></p></td>
<td><p>250</p></td>
<td><p>3</p></td>
<td><p>18 / 100*</p></td>
</tr>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre">fancy/HopperThrowInBasket-v0</span></code></p></td>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre">fancy/HopperThrowInBasket-v0</span></code></p></td>
<td><p>Hopper Throw in Basket task, based on Gymnasiums <code class="docutils literal notranslate"><span class="pre">gym.envs.mujoco.Hopper</span></code></p></td>
<td><p>250</p></td>
<td><p>3</p></td>
<td><p>18 / 100*</p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre">fancy/Walker2DJump-v0</span></code></p></td>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre">fancy/Walker2DJump-v0</span></code></p></td>
<td><p>Walker 2D Jump task, based on Gymnasiums <code class="docutils literal notranslate"><span class="pre">gym.envs.mujoco.Walker2d</span></code></p></td>
<td><p>300</p></td>
<td><p>6</p></td>

View File

@ -4,7 +4,7 @@
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Metaworld &mdash; Fancy Gym 0.2 documentation</title>
<title>Metaworld &mdash; Fancy Gym 0.3.0 documentation</title>
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/style.css" type="text/css" />
@ -41,7 +41,7 @@
<img src="../_static/icon.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
0.2
0.3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">

View File

@ -4,7 +4,7 @@
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Gymnasium &mdash; Fancy Gym 0.2 documentation</title>
<title>Gymnasium &mdash; Fancy Gym 0.3.0 documentation</title>
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/style.css" type="text/css" />
@ -41,7 +41,7 @@
<img src="../_static/icon.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
0.2
0.3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">

View File

@ -4,7 +4,7 @@
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>DeepMind Control Examples &mdash; Fancy Gym 0.2 documentation</title>
<title>DeepMind Control Examples &mdash; Fancy Gym 0.3.0 documentation</title>
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/style.css" type="text/css" />
@ -41,7 +41,7 @@
<img src="../_static/icon.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
0.2
0.3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
@ -126,7 +126,7 @@
<span class="linenos"> 17</span><span class="sd"> Returns:</span>
<span class="linenos"> 18</span>
<span class="linenos"> 19</span><span class="sd"> &quot;&quot;&quot;</span>
<span class="linenos"> 20</span> <span class="n">env</span> <span class="o">=</span> <span class="n">gym</span><span class="o">.</span><span class="n">make</span><span class="p">(</span><span class="n">env_id</span><span class="p">)</span>
<span class="linenos"> 20</span> <span class="n">env</span> <span class="o">=</span> <span class="n">gym</span><span class="o">.</span><span class="n">make</span><span class="p">(</span><span class="n">env_id</span><span class="p">,</span> <span class="n">render_mode</span><span class="o">=</span><span class="s1">&#39;human&#39;</span> <span class="k">if</span> <span class="n">render</span> <span class="k">else</span> <span class="kc">None</span><span class="p">)</span>
<span class="linenos"> 21</span> <span class="n">rewards</span> <span class="o">=</span> <span class="mi">0</span>
<span class="linenos"> 22</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">(</span><span class="n">seed</span><span class="o">=</span><span class="n">seed</span><span class="p">)</span>
<span class="linenos"> 23</span> <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;observation shape:&quot;</span><span class="p">,</span> <span class="n">env</span><span class="o">.</span><span class="n">observation_space</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
@ -135,7 +135,7 @@
<span class="linenos"> 26</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">iterations</span><span class="p">):</span>
<span class="linenos"> 27</span> <span class="n">ac</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">action_space</span><span class="o">.</span><span class="n">sample</span><span class="p">()</span>
<span class="linenos"> 28</span> <span class="k">if</span> <span class="n">render</span><span class="p">:</span>
<span class="linenos"> 29</span> <span class="n">env</span><span class="o">.</span><span class="n">render</span><span class="p">(</span><span class="n">mode</span><span class="o">=</span><span class="s2">&quot;human&quot;</span><span class="p">)</span>
<span class="linenos"> 29</span> <span class="n">env</span><span class="o">.</span><span class="n">render</span><span class="p">()</span>
<span class="linenos"> 30</span> <span class="n">obs</span><span class="p">,</span> <span class="n">reward</span><span class="p">,</span> <span class="n">terminated</span><span class="p">,</span> <span class="n">truncated</span><span class="p">,</span> <span class="n">info</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">step</span><span class="p">(</span><span class="n">ac</span><span class="p">)</span>
<span class="linenos"> 31</span> <span class="n">rewards</span> <span class="o">+=</span> <span class="n">reward</span>
<span class="linenos"> 32</span>
@ -193,58 +193,68 @@
<span class="linenos"> 84</span> <span class="c1"># basis_generator_kwargs = {&#39;basis_generator_type&#39;: &#39;rbf&#39;,</span>
<span class="linenos"> 85</span> <span class="c1"># &#39;num_basis&#39;: 5</span>
<span class="linenos"> 86</span> <span class="c1"># }</span>
<span class="linenos"> 87</span> <span class="n">env</span> <span class="o">=</span> <span class="n">fancy_gym</span><span class="o">.</span><span class="n">make_bb</span><span class="p">(</span><span class="n">env_id</span><span class="o">=</span><span class="n">base_env_id</span><span class="p">,</span> <span class="n">wrappers</span><span class="o">=</span><span class="n">wrappers</span><span class="p">,</span> <span class="n">black_box_kwargs</span><span class="o">=</span><span class="p">{},</span>
<span class="linenos"> 88</span> <span class="n">traj_gen_kwargs</span><span class="o">=</span><span class="n">trajectory_generator_kwargs</span><span class="p">,</span> <span class="n">controller_kwargs</span><span class="o">=</span><span class="n">controller_kwargs</span><span class="p">,</span>
<span class="linenos"> 89</span> <span class="n">phase_kwargs</span><span class="o">=</span><span class="n">phase_generator_kwargs</span><span class="p">,</span> <span class="n">basis_kwargs</span><span class="o">=</span><span class="n">basis_generator_kwargs</span><span class="p">,</span>
<span class="linenos"> 90</span> <span class="n">seed</span><span class="o">=</span><span class="n">seed</span><span class="p">)</span>
<span class="linenos"> 91</span>
<span class="linenos"> 92</span> <span class="c1"># This renders the full MP trajectory</span>
<span class="linenos"> 93</span> <span class="c1"># It is only required to call render() once in the beginning, which renders every consecutive trajectory.</span>
<span class="linenos"> 94</span> <span class="c1"># Resetting to no rendering, can be achieved by render(mode=None).</span>
<span class="linenos"> 95</span> <span class="c1"># It is also possible to change them mode multiple times when</span>
<span class="linenos"> 96</span> <span class="c1"># e.g. only every nth trajectory should be displayed.</span>
<span class="linenos"> 97</span> <span class="k">if</span> <span class="n">render</span><span class="p">:</span>
<span class="linenos"> 98</span> <span class="n">env</span><span class="o">.</span><span class="n">render</span><span class="p">(</span><span class="n">mode</span><span class="o">=</span><span class="s2">&quot;human&quot;</span><span class="p">)</span>
<span class="linenos"> 99</span>
<span class="linenos">100</span> <span class="n">rewards</span> <span class="o">=</span> <span class="mi">0</span>
<span class="linenos">101</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos">102</span>
<span class="linenos">103</span> <span class="c1"># number of samples/full trajectories (multiple environment steps)</span>
<span class="linenos">104</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">iterations</span><span class="p">):</span>
<span class="linenos">105</span> <span class="n">ac</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">action_space</span><span class="o">.</span><span class="n">sample</span><span class="p">()</span>
<span class="linenos">106</span> <span class="n">obs</span><span class="p">,</span> <span class="n">reward</span><span class="p">,</span> <span class="n">terminated</span><span class="p">,</span> <span class="n">truncated</span><span class="p">,</span> <span class="n">info</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">step</span><span class="p">(</span><span class="n">ac</span><span class="p">)</span>
<span class="linenos">107</span> <span class="n">rewards</span> <span class="o">+=</span> <span class="n">reward</span>
<span class="linenos">108</span>
<span class="linenos">109</span> <span class="k">if</span> <span class="n">terminated</span> <span class="ow">or</span> <span class="n">truncated</span><span class="p">:</span>
<span class="linenos">110</span> <span class="nb">print</span><span class="p">(</span><span class="n">base_env_id</span><span class="p">,</span> <span class="n">rewards</span><span class="p">)</span>
<span class="linenos">111</span> <span class="n">rewards</span> <span class="o">=</span> <span class="mi">0</span>
<span class="linenos">112</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos">113</span>
<span class="linenos">114</span> <span class="n">env</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
<span class="linenos">115</span> <span class="k">del</span> <span class="n">env</span>
<span class="linenos">116</span>
<span class="linenos"> 87</span> <span class="n">base_env</span> <span class="o">=</span> <span class="n">gym</span><span class="o">.</span><span class="n">make</span><span class="p">(</span><span class="n">base_env_id</span><span class="p">,</span> <span class="n">render_mode</span><span class="o">=</span><span class="s1">&#39;human&#39;</span> <span class="k">if</span> <span class="n">render</span> <span class="k">else</span> <span class="kc">None</span><span class="p">)</span>
<span class="linenos"> 88</span> <span class="n">env</span> <span class="o">=</span> <span class="n">fancy_gym</span><span class="o">.</span><span class="n">make_bb</span><span class="p">(</span><span class="n">env</span><span class="o">=</span><span class="n">base_env</span><span class="p">,</span> <span class="n">wrappers</span><span class="o">=</span><span class="n">wrappers</span><span class="p">,</span> <span class="n">black_box_kwargs</span><span class="o">=</span><span class="p">{},</span>
<span class="linenos"> 89</span> <span class="n">traj_gen_kwargs</span><span class="o">=</span><span class="n">trajectory_generator_kwargs</span><span class="p">,</span> <span class="n">controller_kwargs</span><span class="o">=</span><span class="n">controller_kwargs</span><span class="p">,</span>
<span class="linenos"> 90</span> <span class="n">phase_kwargs</span><span class="o">=</span><span class="n">phase_generator_kwargs</span><span class="p">,</span> <span class="n">basis_kwargs</span><span class="o">=</span><span class="n">basis_generator_kwargs</span><span class="p">,</span>
<span class="linenos"> 91</span> <span class="n">seed</span><span class="o">=</span><span class="n">seed</span><span class="p">)</span>
<span class="linenos"> 92</span>
<span class="linenos"> 93</span> <span class="c1"># This renders the full MP trajectory</span>
<span class="linenos"> 94</span> <span class="c1"># It is only required to call render() once in the beginning, which renders every consecutive trajectory.</span>
<span class="linenos"> 95</span> <span class="c1"># Resetting to no rendering, can be achieved by render(mode=None).</span>
<span class="linenos"> 96</span> <span class="c1"># It is also possible to change them mode multiple times when</span>
<span class="linenos"> 97</span> <span class="c1"># e.g. only every nth trajectory should be displayed.</span>
<span class="linenos"> 98</span> <span class="k">if</span> <span class="n">render</span><span class="p">:</span>
<span class="linenos"> 99</span> <span class="n">env</span><span class="o">.</span><span class="n">render</span><span class="p">()</span>
<span class="linenos">100</span>
<span class="linenos">101</span> <span class="n">rewards</span> <span class="o">=</span> <span class="mi">0</span>
<span class="linenos">102</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos">103</span>
<span class="linenos">104</span> <span class="c1"># number of samples/full trajectories (multiple environment steps)</span>
<span class="linenos">105</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">iterations</span><span class="p">):</span>
<span class="linenos">106</span> <span class="n">ac</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">action_space</span><span class="o">.</span><span class="n">sample</span><span class="p">()</span>
<span class="linenos">107</span> <span class="n">obs</span><span class="p">,</span> <span class="n">reward</span><span class="p">,</span> <span class="n">terminated</span><span class="p">,</span> <span class="n">truncated</span><span class="p">,</span> <span class="n">info</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">step</span><span class="p">(</span><span class="n">ac</span><span class="p">)</span>
<span class="linenos">108</span> <span class="n">rewards</span> <span class="o">+=</span> <span class="n">reward</span>
<span class="linenos">109</span>
<span class="linenos">110</span> <span class="k">if</span> <span class="n">terminated</span> <span class="ow">or</span> <span class="n">truncated</span><span class="p">:</span>
<span class="linenos">111</span> <span class="nb">print</span><span class="p">(</span><span class="n">base_env_id</span><span class="p">,</span> <span class="n">rewards</span><span class="p">)</span>
<span class="linenos">112</span> <span class="n">rewards</span> <span class="o">=</span> <span class="mi">0</span>
<span class="linenos">113</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos">114</span>
<span class="linenos">115</span> <span class="n">env</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
<span class="linenos">116</span> <span class="k">del</span> <span class="n">env</span>
<span class="linenos">117</span>
<span class="linenos">118</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">&#39;__main__&#39;</span><span class="p">:</span>
<span class="linenos">119</span> <span class="c1"># Disclaimer: DMC environments require the seed to be specified in the beginning.</span>
<span class="linenos">120</span> <span class="c1"># Adjusting it afterwards with env.seed() is not recommended as it does not affect the underlying physics.</span>
<span class="linenos">121</span>
<span class="linenos">122</span> <span class="c1"># For rendering DMC</span>
<span class="linenos">123</span> <span class="c1"># export MUJOCO_GL=&quot;osmesa&quot;</span>
<span class="linenos">124</span> <span class="n">render</span> <span class="o">=</span> <span class="kc">True</span>
<span class="linenos">125</span>
<span class="linenos">126</span> <span class="c1"># # Standard DMC Suite tasks</span>
<span class="linenos">127</span> <span class="n">example_dmc</span><span class="p">(</span><span class="s2">&quot;dm_control/fish-swim&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1000</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">128</span> <span class="c1">#</span>
<span class="linenos">129</span> <span class="c1"># # Manipulation tasks</span>
<span class="linenos">130</span> <span class="c1"># # Disclaimer: The vision versions are currently not integrated and yield an error</span>
<span class="linenos">131</span> <span class="n">example_dmc</span><span class="p">(</span><span class="s2">&quot;dm_control/manipulation-reach_site_features&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">250</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">132</span> <span class="c1">#</span>
<span class="linenos">133</span> <span class="c1"># # Gym + DMC hybrid task provided in the MP framework</span>
<span class="linenos">134</span> <span class="n">example_dmc</span><span class="p">(</span><span class="s2">&quot;dm_control_ProMP/ball_in_cup-catch-v0&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">135</span>
<span class="linenos">136</span> <span class="c1"># Custom DMC task # Different seed, because the episode is longer for this example and the name+seed combo is</span>
<span class="linenos">137</span> <span class="c1"># already registered above</span>
<span class="linenos">138</span> <span class="n">example_custom_dmc_and_mp</span><span class="p">(</span><span class="n">seed</span><span class="o">=</span><span class="mi">11</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">118</span><span class="k">def</span> <span class="nf">main</span><span class="p">(</span><span class="n">render</span> <span class="o">=</span> <span class="kc">False</span><span class="p">):</span>
<span class="linenos">119</span> <span class="c1"># # Standard DMC Suite tasks</span>
<span class="linenos">120</span> <span class="n">example_dmc</span><span class="p">(</span><span class="s2">&quot;dm_control/fish-swim&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1000</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">121</span> <span class="c1">#</span>
<span class="linenos">122</span> <span class="c1"># # Manipulation tasks</span>
<span class="linenos">123</span> <span class="c1"># # Disclaimer: The vision versions are currently not integrated and yield an error</span>
<span class="linenos">124</span> <span class="n">example_dmc</span><span class="p">(</span><span class="s2">&quot;dm_control/reach_site_features&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">250</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">125</span> <span class="c1">#</span>
<span class="linenos">126</span> <span class="c1"># # Gym + DMC hybrid task provided in the MP framework</span>
<span class="linenos">127</span> <span class="n">example_dmc</span><span class="p">(</span><span class="s2">&quot;dm_control_ProMP/ball_in_cup-catch-v0&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">128</span>
<span class="linenos">129</span> <span class="c1"># Custom DMC task # Different seed, because the episode is longer for this example and the name+seed combo is</span>
<span class="linenos">130</span> <span class="c1"># already registered above</span>
<span class="linenos">131</span> <span class="n">example_custom_dmc_and_mp</span><span class="p">(</span><span class="n">seed</span><span class="o">=</span><span class="mi">11</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">132</span>
<span class="linenos">133</span> <span class="c1"># # Standard DMC Suite tasks</span>
<span class="linenos">134</span> <span class="n">example_dmc</span><span class="p">(</span><span class="s2">&quot;dm_control/fish-swim&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1000</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">135</span> <span class="c1">#</span>
<span class="linenos">136</span> <span class="c1"># # Manipulation tasks</span>
<span class="linenos">137</span> <span class="c1"># # Disclaimer: The vision versions are currently not integrated and yield an error</span>
<span class="linenos">138</span> <span class="n">example_dmc</span><span class="p">(</span><span class="s2">&quot;dm_control/reach_site_features&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">250</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">139</span> <span class="c1">#</span>
<span class="linenos">140</span> <span class="c1"># # Gym + DMC hybrid task provided in the MP framework</span>
<span class="linenos">141</span> <span class="n">example_dmc</span><span class="p">(</span><span class="s2">&quot;dm_control_ProMP/ball_in_cup-catch-v0&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">142</span>
<span class="linenos">143</span> <span class="c1"># Custom DMC task # Different seed, because the episode is longer for this example and the name+seed combo is</span>
<span class="linenos">144</span> <span class="c1"># already registered above</span>
<span class="linenos">145</span> <span class="n">example_custom_dmc_and_mp</span><span class="p">(</span><span class="n">seed</span><span class="o">=</span><span class="mi">11</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">146</span>
<span class="linenos">147</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">&#39;__main__&#39;</span><span class="p">:</span>
<span class="linenos">148</span> <span class="n">main</span><span class="p">()</span>
</pre></div>
</div>
</section>

View File

@ -4,7 +4,7 @@
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>General Usage Examples &mdash; Fancy Gym 0.2 documentation</title>
<title>General Usage Examples &mdash; Fancy Gym 0.3.0 documentation</title>
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/style.css" type="text/css" />
@ -41,7 +41,7 @@
<img src="../_static/icon.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
0.2
0.3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
@ -130,7 +130,7 @@
<span class="linenos"> 21</span>
<span class="linenos"> 22</span><span class="sd"> &quot;&quot;&quot;</span>
<span class="linenos"> 23</span>
<span class="linenos"> 24</span> <span class="n">env</span> <span class="o">=</span> <span class="n">gym</span><span class="o">.</span><span class="n">make</span><span class="p">(</span><span class="n">env_id</span><span class="p">)</span>
<span class="linenos"> 24</span> <span class="n">env</span> <span class="o">=</span> <span class="n">gym</span><span class="o">.</span><span class="n">make</span><span class="p">(</span><span class="n">env_id</span><span class="p">,</span> <span class="n">render_mode</span><span class="o">=</span><span class="s1">&#39;human&#39;</span> <span class="k">if</span> <span class="n">render</span> <span class="k">else</span> <span class="kc">None</span><span class="p">)</span>
<span class="linenos"> 25</span> <span class="n">rewards</span> <span class="o">=</span> <span class="mi">0</span>
<span class="linenos"> 26</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">(</span><span class="n">seed</span><span class="o">=</span><span class="n">seed</span><span class="p">)</span>
<span class="linenos"> 27</span> <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Observation shape: &quot;</span><span class="p">,</span> <span class="n">env</span><span class="o">.</span><span class="n">observation_space</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
@ -194,21 +194,21 @@
<span class="linenos"> 85</span> <span class="c1"># do not return values above threshold</span>
<span class="linenos"> 86</span> <span class="k">return</span> <span class="o">*</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">v</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">stack</span><span class="p">(</span><span class="n">v</span><span class="p">)[:</span><span class="n">n_samples</span><span class="p">],</span> <span class="n">buffer</span><span class="o">.</span><span class="n">values</span><span class="p">()),</span>
<span class="linenos"> 87</span>
<span class="linenos"> 88</span>
<span class="linenos"> 89</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">&#39;__main__&#39;</span><span class="p">:</span>
<span class="linenos"> 90</span> <span class="n">render</span> <span class="o">=</span> <span class="kc">True</span>
<span class="linenos"> 88</span><span class="k">def</span> <span class="nf">main</span><span class="p">(</span><span class="n">render</span> <span class="o">=</span> <span class="kc">False</span><span class="p">):</span>
<span class="linenos"> 89</span> <span class="c1"># Basic gym task</span>
<span class="linenos"> 90</span> <span class="n">example_general</span><span class="p">(</span><span class="s2">&quot;Pendulum-v1&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">200</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos"> 91</span>
<span class="linenos"> 92</span> <span class="c1"># Basic gym task</span>
<span class="linenos"> 93</span> <span class="n">example_general</span><span class="p">(</span><span class="s2">&quot;Pendulum-v1&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">200</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos"> 92</span> <span class="c1"># Mujoco task from framework</span>
<span class="linenos"> 93</span> <span class="n">example_general</span><span class="p">(</span><span class="s2">&quot;fancy/Reacher5d-v0&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">200</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos"> 94</span>
<span class="linenos"> 95</span> <span class="c1"># Mujoco task from framework</span>
<span class="linenos"> 96</span> <span class="n">example_general</span><span class="p">(</span><span class="s2">&quot;fancy/Reacher5d-v0&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">200</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos"> 95</span> <span class="c1"># # OpenAI Mujoco task</span>
<span class="linenos"> 96</span> <span class="n">example_general</span><span class="p">(</span><span class="s2">&quot;HalfCheetah-v2&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos"> 97</span>
<span class="linenos"> 98</span> <span class="c1"># # OpenAI Mujoco task</span>
<span class="linenos"> 99</span> <span class="n">example_general</span><span class="p">(</span><span class="s2">&quot;HalfCheetah-v2&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos"> 98</span> <span class="c1"># Vectorized multiprocessing environments</span>
<span class="linenos"> 99</span> <span class="c1"># example_async(env_id=&quot;HoleReacher-v0&quot;, n_cpu=2, seed=int(&#39;533D&#39;, 16), n_samples=2 * 200)</span>
<span class="linenos">100</span>
<span class="linenos">101</span> <span class="c1"># Vectorized multiprocessing environments</span>
<span class="linenos">102</span> <span class="c1"># example_async(env_id=&quot;HoleReacher-v0&quot;, n_cpu=2, seed=int(&#39;533D&#39;, 16), n_samples=2 * 200)</span>
<span class="linenos">101</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">&#39;__main__&#39;</span><span class="p">:</span>
<span class="linenos">102</span> <span class="n">main</span><span class="p">()</span>
</pre></div>
</div>
</section>

View File

@ -4,7 +4,7 @@
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Metaworld Examples &mdash; Fancy Gym 0.2 documentation</title>
<title>Metaworld Examples &mdash; Fancy Gym 0.3.0 documentation</title>
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/style.css" type="text/css" />
@ -41,7 +41,7 @@
<img src="../_static/icon.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
0.2
0.3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
@ -111,7 +111,7 @@
<span class="linenos"> 2</span><span class="kn">import</span> <span class="nn">fancy_gym</span>
<span class="linenos"> 3</span>
<span class="linenos"> 4</span>
<span class="linenos"> 5</span><span class="k">def</span> <span class="nf">example_meta</span><span class="p">(</span><span class="n">env_id</span><span class="o">=</span><span class="s2">&quot;fish-swim&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1000</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
<span class="linenos"> 5</span><span class="k">def</span> <span class="nf">example_meta</span><span class="p">(</span><span class="n">env_id</span><span class="o">=</span><span class="s2">&quot;metaworld/button-press-v2&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1000</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
<span class="linenos"> 6</span><span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="linenos"> 7</span><span class="sd"> Example for running a MetaWorld based env in the step based setting.</span>
<span class="linenos"> 8</span><span class="sd"> The env_id has to be specified as `task_name-v2`. V1 versions are not supported and we always</span>
@ -127,7 +127,7 @@
<span class="linenos"> 18</span><span class="sd"> Returns:</span>
<span class="linenos"> 19</span>
<span class="linenos"> 20</span><span class="sd"> &quot;&quot;&quot;</span>
<span class="linenos"> 21</span> <span class="n">env</span> <span class="o">=</span> <span class="n">gym</span><span class="o">.</span><span class="n">make</span><span class="p">(</span><span class="n">env_id</span><span class="p">)</span>
<span class="linenos"> 21</span> <span class="n">env</span> <span class="o">=</span> <span class="n">gym</span><span class="o">.</span><span class="n">make</span><span class="p">(</span><span class="n">env_id</span><span class="p">,</span> <span class="n">render_mode</span><span class="o">=</span><span class="s1">&#39;human&#39;</span> <span class="k">if</span> <span class="n">render</span> <span class="k">else</span> <span class="kc">None</span><span class="p">)</span>
<span class="linenos"> 22</span> <span class="n">rewards</span> <span class="o">=</span> <span class="mi">0</span>
<span class="linenos"> 23</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">(</span><span class="n">seed</span><span class="o">=</span><span class="n">seed</span><span class="p">)</span>
<span class="linenos"> 24</span> <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;observation shape:&quot;</span><span class="p">,</span> <span class="n">env</span><span class="o">.</span><span class="n">observation_space</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
@ -136,111 +136,104 @@
<span class="linenos"> 27</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">iterations</span><span class="p">):</span>
<span class="linenos"> 28</span> <span class="n">ac</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">action_space</span><span class="o">.</span><span class="n">sample</span><span class="p">()</span>
<span class="linenos"> 29</span> <span class="k">if</span> <span class="n">render</span><span class="p">:</span>
<span class="linenos"> 30</span> <span class="c1"># THIS NEEDS TO BE SET TO FALSE FOR NOW, BECAUSE THE INTERFACE FOR RENDERING IS DIFFERENT TO BASIC GYM</span>
<span class="linenos"> 31</span> <span class="c1"># TODO: Remove this, when Metaworld fixes its interface.</span>
<span class="linenos"> 32</span> <span class="n">env</span><span class="o">.</span><span class="n">render</span><span class="p">(</span><span class="kc">False</span><span class="p">)</span>
<span class="linenos"> 33</span> <span class="n">obs</span><span class="p">,</span> <span class="n">reward</span><span class="p">,</span> <span class="n">terminated</span><span class="p">,</span> <span class="n">truncated</span><span class="p">,</span> <span class="n">info</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">step</span><span class="p">(</span><span class="n">ac</span><span class="p">)</span>
<span class="linenos"> 34</span> <span class="n">rewards</span> <span class="o">+=</span> <span class="n">reward</span>
<span class="linenos"> 35</span> <span class="k">if</span> <span class="n">terminated</span> <span class="ow">or</span> <span class="n">truncated</span><span class="p">:</span>
<span class="linenos"> 36</span> <span class="nb">print</span><span class="p">(</span><span class="n">env_id</span><span class="p">,</span> <span class="n">rewards</span><span class="p">)</span>
<span class="linenos"> 37</span> <span class="n">rewards</span> <span class="o">=</span> <span class="mi">0</span>
<span class="linenos"> 38</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos"> 39</span>
<span class="linenos"> 40</span> <span class="n">env</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
<span class="linenos"> 41</span> <span class="k">del</span> <span class="n">env</span>
<span class="linenos"> 42</span>
<span class="linenos"> 43</span>
<span class="linenos"> 44</span><span class="k">def</span> <span class="nf">example_custom_meta_and_mp</span><span class="p">(</span><span class="n">seed</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
<span class="linenos"> 45</span><span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="linenos"> 46</span><span class="sd"> Example for running a custom movement primitive based environments.</span>
<span class="linenos"> 47</span><span class="sd"> Our already registered environments follow the same structure.</span>
<span class="linenos"> 48</span><span class="sd"> Hence, this also allows to adjust hyperparameters of the movement primitives.</span>
<span class="linenos"> 49</span><span class="sd"> Yet, we recommend the method above if you are just interested in chaining those parameters for existing tasks.</span>
<span class="linenos"> 50</span><span class="sd"> We appreciate PRs for custom environments (especially MP wrappers of existing tasks)</span>
<span class="linenos"> 51</span><span class="sd"> for our repo: https://github.com/ALRhub/fancy_gym/</span>
<span class="linenos"> 52</span><span class="sd"> Args:</span>
<span class="linenos"> 53</span><span class="sd"> seed: seed for deterministic behaviour (TODO: currently not working due to an issue in MetaWorld code)</span>
<span class="linenos"> 54</span><span class="sd"> iterations: Number of rollout steps to run</span>
<span class="linenos"> 55</span><span class="sd"> render: Render the episode (TODO: currently not working due to an issue in MetaWorld code)</span>
<span class="linenos"> 30</span> <span class="n">env</span><span class="o">.</span><span class="n">render</span><span class="p">()</span>
<span class="linenos"> 31</span> <span class="n">obs</span><span class="p">,</span> <span class="n">reward</span><span class="p">,</span> <span class="n">terminated</span><span class="p">,</span> <span class="n">truncated</span><span class="p">,</span> <span class="n">info</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">step</span><span class="p">(</span><span class="n">ac</span><span class="p">)</span>
<span class="linenos"> 32</span> <span class="n">rewards</span> <span class="o">+=</span> <span class="n">reward</span>
<span class="linenos"> 33</span> <span class="k">if</span> <span class="n">terminated</span> <span class="ow">or</span> <span class="n">truncated</span><span class="p">:</span>
<span class="linenos"> 34</span> <span class="nb">print</span><span class="p">(</span><span class="n">env_id</span><span class="p">,</span> <span class="n">rewards</span><span class="p">)</span>
<span class="linenos"> 35</span> <span class="n">rewards</span> <span class="o">=</span> <span class="mi">0</span>
<span class="linenos"> 36</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">(</span><span class="n">seed</span><span class="o">=</span><span class="n">seed</span><span class="o">+</span><span class="n">i</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span>
<span class="linenos"> 37</span>
<span class="linenos"> 38</span> <span class="n">env</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
<span class="linenos"> 39</span> <span class="k">del</span> <span class="n">env</span>
<span class="linenos"> 40</span>
<span class="linenos"> 41</span>
<span class="linenos"> 42</span><span class="k">def</span> <span class="nf">example_custom_meta_and_mp</span><span class="p">(</span><span class="n">seed</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
<span class="linenos"> 43</span><span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="linenos"> 44</span><span class="sd"> Example for running a custom movement primitive based environments.</span>
<span class="linenos"> 45</span><span class="sd"> Our already registered environments follow the same structure.</span>
<span class="linenos"> 46</span><span class="sd"> Hence, this also allows to adjust hyperparameters of the movement primitives.</span>
<span class="linenos"> 47</span><span class="sd"> Yet, we recommend the method above if you are just interested in chaining those parameters for existing tasks.</span>
<span class="linenos"> 48</span><span class="sd"> We appreciate PRs for custom environments (especially MP wrappers of existing tasks)</span>
<span class="linenos"> 49</span><span class="sd"> for our repo: https://github.com/ALRhub/fancy_gym/</span>
<span class="linenos"> 50</span><span class="sd"> Args:</span>
<span class="linenos"> 51</span><span class="sd"> seed: seed for deterministic behaviour (TODO: currently not working due to an issue in MetaWorld code)</span>
<span class="linenos"> 52</span><span class="sd"> iterations: Number of rollout steps to run</span>
<span class="linenos"> 53</span><span class="sd"> render: Render the episode (TODO: currently not working due to an issue in MetaWorld code)</span>
<span class="linenos"> 54</span>
<span class="linenos"> 55</span><span class="sd"> Returns:</span>
<span class="linenos"> 56</span>
<span class="linenos"> 57</span><span class="sd"> Returns:</span>
<span class="linenos"> 57</span><span class="sd"> &quot;&quot;&quot;</span>
<span class="linenos"> 58</span>
<span class="linenos"> 59</span><span class="sd"> &quot;&quot;&quot;</span>
<span class="linenos"> 60</span>
<span class="linenos"> 61</span> <span class="c1"># Base MetaWorld name, according to structure of above example</span>
<span class="linenos"> 62</span> <span class="n">base_env_id</span> <span class="o">=</span> <span class="s2">&quot;metaworld/button-press-v2&quot;</span>
<span class="linenos"> 63</span>
<span class="linenos"> 64</span> <span class="c1"># Replace this wrapper with the custom wrapper for your environment by inheriting from the RawInterfaceWrapper.</span>
<span class="linenos"> 65</span> <span class="c1"># You can also add other gym.Wrappers in case they are needed.</span>
<span class="linenos"> 66</span> <span class="n">wrappers</span> <span class="o">=</span> <span class="p">[</span><span class="n">fancy_gym</span><span class="o">.</span><span class="n">meta</span><span class="o">.</span><span class="n">goal_object_change_mp_wrapper</span><span class="o">.</span><span class="n">MPWrapper</span><span class="p">]</span>
<span class="linenos"> 67</span> <span class="c1"># # For a ProMP</span>
<span class="linenos"> 68</span> <span class="c1"># trajectory_generator_kwargs = {&#39;trajectory_generator_type&#39;: &#39;promp&#39;}</span>
<span class="linenos"> 69</span> <span class="c1"># phase_generator_kwargs = {&#39;phase_generator_type&#39;: &#39;linear&#39;}</span>
<span class="linenos"> 70</span> <span class="c1"># controller_kwargs = {&#39;controller_type&#39;: &#39;metaworld&#39;}</span>
<span class="linenos"> 71</span> <span class="c1"># basis_generator_kwargs = {&#39;basis_generator_type&#39;: &#39;zero_rbf&#39;,</span>
<span class="linenos"> 72</span> <span class="c1"># &#39;num_basis&#39;: 5,</span>
<span class="linenos"> 73</span> <span class="c1"># &#39;num_basis_zero_start&#39;: 1</span>
<span class="linenos"> 74</span> <span class="c1"># }</span>
<span class="linenos"> 75</span>
<span class="linenos"> 76</span> <span class="c1"># For a DMP</span>
<span class="linenos"> 77</span> <span class="n">trajectory_generator_kwargs</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;trajectory_generator_type&#39;</span><span class="p">:</span> <span class="s1">&#39;dmp&#39;</span><span class="p">}</span>
<span class="linenos"> 78</span> <span class="n">phase_generator_kwargs</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;phase_generator_type&#39;</span><span class="p">:</span> <span class="s1">&#39;exp&#39;</span><span class="p">,</span>
<span class="linenos"> 79</span> <span class="s1">&#39;alpha_phase&#39;</span><span class="p">:</span> <span class="mi">2</span><span class="p">}</span>
<span class="linenos"> 80</span> <span class="n">controller_kwargs</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;controller_type&#39;</span><span class="p">:</span> <span class="s1">&#39;metaworld&#39;</span><span class="p">}</span>
<span class="linenos"> 81</span> <span class="n">basis_generator_kwargs</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;basis_generator_type&#39;</span><span class="p">:</span> <span class="s1">&#39;rbf&#39;</span><span class="p">,</span>
<span class="linenos"> 82</span> <span class="s1">&#39;num_basis&#39;</span><span class="p">:</span> <span class="mi">5</span>
<span class="linenos"> 83</span> <span class="p">}</span>
<span class="linenos"> 84</span> <span class="n">env</span> <span class="o">=</span> <span class="n">fancy_gym</span><span class="o">.</span><span class="n">make_bb</span><span class="p">(</span><span class="n">env_id</span><span class="o">=</span><span class="n">base_env_id</span><span class="p">,</span> <span class="n">wrappers</span><span class="o">=</span><span class="n">wrappers</span><span class="p">,</span> <span class="n">black_box_kwargs</span><span class="o">=</span><span class="p">{},</span>
<span class="linenos"> 85</span> <span class="n">traj_gen_kwargs</span><span class="o">=</span><span class="n">trajectory_generator_kwargs</span><span class="p">,</span> <span class="n">controller_kwargs</span><span class="o">=</span><span class="n">controller_kwargs</span><span class="p">,</span>
<span class="linenos"> 86</span> <span class="n">phase_kwargs</span><span class="o">=</span><span class="n">phase_generator_kwargs</span><span class="p">,</span> <span class="n">basis_kwargs</span><span class="o">=</span><span class="n">basis_generator_kwargs</span><span class="p">,</span>
<span class="linenos"> 87</span> <span class="n">seed</span><span class="o">=</span><span class="n">seed</span><span class="p">)</span>
<span class="linenos"> 88</span>
<span class="linenos"> 89</span> <span class="c1"># This renders the full MP trajectory</span>
<span class="linenos"> 90</span> <span class="c1"># It is only required to call render() once in the beginning, which renders every consecutive trajectory.</span>
<span class="linenos"> 91</span> <span class="c1"># Resetting to no rendering, can be achieved by render(mode=None).</span>
<span class="linenos"> 92</span> <span class="c1"># It is also possible to change them mode multiple times when</span>
<span class="linenos"> 93</span> <span class="c1"># e.g. only every nth trajectory should be displayed.</span>
<span class="linenos"> 94</span> <span class="k">if</span> <span class="n">render</span><span class="p">:</span>
<span class="linenos"> 95</span> <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">&quot;Metaworld render interface bug does not allow to render() fixes its interface. &quot;</span>
<span class="linenos"> 96</span> <span class="s2">&quot;A temporary workaround is to alter their code in MujocoEnv render() from &quot;</span>
<span class="linenos"> 97</span> <span class="s2">&quot;`if not offscreen` to `if not offscreen or offscreen == &#39;human&#39;`.&quot;</span><span class="p">)</span>
<span class="linenos"> 98</span> <span class="c1"># TODO: Remove this, when Metaworld fixes its interface.</span>
<span class="linenos"> 99</span> <span class="c1"># env.render(mode=&quot;human&quot;)</span>
<span class="linenos">100</span>
<span class="linenos">101</span> <span class="n">rewards</span> <span class="o">=</span> <span class="mi">0</span>
<span class="linenos">102</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos">103</span>
<span class="linenos">104</span> <span class="c1"># number of samples/full trajectories (multiple environment steps)</span>
<span class="linenos">105</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">iterations</span><span class="p">):</span>
<span class="linenos">106</span> <span class="n">ac</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">action_space</span><span class="o">.</span><span class="n">sample</span><span class="p">()</span>
<span class="linenos">107</span> <span class="n">obs</span><span class="p">,</span> <span class="n">reward</span><span class="p">,</span> <span class="n">terminated</span><span class="p">,</span> <span class="n">truncated</span><span class="p">,</span> <span class="n">info</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">step</span><span class="p">(</span><span class="n">ac</span><span class="p">)</span>
<span class="linenos">108</span> <span class="n">rewards</span> <span class="o">+=</span> <span class="n">reward</span>
<span class="linenos"> 59</span> <span class="c1"># Base MetaWorld name, according to structure of above example</span>
<span class="linenos"> 60</span> <span class="n">base_env_id</span> <span class="o">=</span> <span class="s2">&quot;metaworld/button-press-v2&quot;</span>
<span class="linenos"> 61</span>
<span class="linenos"> 62</span> <span class="c1"># Replace this wrapper with the custom wrapper for your environment by inheriting from the RawInterfaceWrapper.</span>
<span class="linenos"> 63</span> <span class="c1"># You can also add other gym.Wrappers in case they are needed.</span>
<span class="linenos"> 64</span> <span class="n">wrappers</span> <span class="o">=</span> <span class="p">[</span><span class="n">fancy_gym</span><span class="o">.</span><span class="n">meta</span><span class="o">.</span><span class="n">goal_object_change_mp_wrapper</span><span class="o">.</span><span class="n">MPWrapper</span><span class="p">]</span>
<span class="linenos"> 65</span> <span class="c1"># # For a ProMP</span>
<span class="linenos"> 66</span> <span class="c1"># trajectory_generator_kwargs = {&#39;trajectory_generator_type&#39;: &#39;promp&#39;}</span>
<span class="linenos"> 67</span> <span class="c1"># phase_generator_kwargs = {&#39;phase_generator_type&#39;: &#39;linear&#39;}</span>
<span class="linenos"> 68</span> <span class="c1"># controller_kwargs = {&#39;controller_type&#39;: &#39;metaworld&#39;}</span>
<span class="linenos"> 69</span> <span class="c1"># basis_generator_kwargs = {&#39;basis_generator_type&#39;: &#39;zero_rbf&#39;,</span>
<span class="linenos"> 70</span> <span class="c1"># &#39;num_basis&#39;: 5,</span>
<span class="linenos"> 71</span> <span class="c1"># &#39;num_basis_zero_start&#39;: 1</span>
<span class="linenos"> 72</span> <span class="c1"># }</span>
<span class="linenos"> 73</span>
<span class="linenos"> 74</span> <span class="c1"># For a DMP</span>
<span class="linenos"> 75</span> <span class="n">trajectory_generator_kwargs</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;trajectory_generator_type&#39;</span><span class="p">:</span> <span class="s1">&#39;dmp&#39;</span><span class="p">}</span>
<span class="linenos"> 76</span> <span class="n">phase_generator_kwargs</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;phase_generator_type&#39;</span><span class="p">:</span> <span class="s1">&#39;exp&#39;</span><span class="p">,</span>
<span class="linenos"> 77</span> <span class="s1">&#39;alpha_phase&#39;</span><span class="p">:</span> <span class="mi">2</span><span class="p">}</span>
<span class="linenos"> 78</span> <span class="n">controller_kwargs</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;controller_type&#39;</span><span class="p">:</span> <span class="s1">&#39;metaworld&#39;</span><span class="p">}</span>
<span class="linenos"> 79</span> <span class="n">basis_generator_kwargs</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;basis_generator_type&#39;</span><span class="p">:</span> <span class="s1">&#39;rbf&#39;</span><span class="p">,</span>
<span class="linenos"> 80</span> <span class="s1">&#39;num_basis&#39;</span><span class="p">:</span> <span class="mi">5</span>
<span class="linenos"> 81</span> <span class="p">}</span>
<span class="linenos"> 82</span> <span class="n">base_env</span> <span class="o">=</span> <span class="n">gym</span><span class="o">.</span><span class="n">make</span><span class="p">(</span><span class="n">base_env_id</span><span class="p">,</span> <span class="n">render_mode</span><span class="o">=</span><span class="s1">&#39;human&#39;</span> <span class="k">if</span> <span class="n">render</span> <span class="k">else</span> <span class="kc">None</span><span class="p">)</span>
<span class="linenos"> 83</span> <span class="n">env</span> <span class="o">=</span> <span class="n">fancy_gym</span><span class="o">.</span><span class="n">make_bb</span><span class="p">(</span><span class="n">env</span><span class="o">=</span><span class="n">base_env</span><span class="p">,</span> <span class="n">wrappers</span><span class="o">=</span><span class="n">wrappers</span><span class="p">,</span> <span class="n">black_box_kwargs</span><span class="o">=</span><span class="p">{},</span>
<span class="linenos"> 84</span> <span class="n">traj_gen_kwargs</span><span class="o">=</span><span class="n">trajectory_generator_kwargs</span><span class="p">,</span> <span class="n">controller_kwargs</span><span class="o">=</span><span class="n">controller_kwargs</span><span class="p">,</span>
<span class="linenos"> 85</span> <span class="n">phase_kwargs</span><span class="o">=</span><span class="n">phase_generator_kwargs</span><span class="p">,</span> <span class="n">basis_kwargs</span><span class="o">=</span><span class="n">basis_generator_kwargs</span><span class="p">,</span>
<span class="linenos"> 86</span> <span class="n">seed</span><span class="o">=</span><span class="n">seed</span><span class="p">)</span>
<span class="linenos"> 87</span>
<span class="linenos"> 88</span> <span class="c1"># This renders the full MP trajectory</span>
<span class="linenos"> 89</span> <span class="c1"># It is only required to call render() once in the beginning, which renders every consecutive trajectory.</span>
<span class="linenos"> 90</span> <span class="c1"># Resetting to no rendering, can be achieved by render(mode=None).</span>
<span class="linenos"> 91</span> <span class="c1"># It is also possible to change them mode multiple times when</span>
<span class="linenos"> 92</span> <span class="c1"># e.g. only every nth trajectory should be displayed.</span>
<span class="linenos"> 93</span> <span class="k">if</span> <span class="n">render</span><span class="p">:</span>
<span class="linenos"> 94</span> <span class="n">env</span><span class="o">.</span><span class="n">render</span><span class="p">()</span>
<span class="linenos"> 95</span>
<span class="linenos"> 96</span> <span class="n">rewards</span> <span class="o">=</span> <span class="mi">0</span>
<span class="linenos"> 97</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">(</span><span class="n">seed</span><span class="o">=</span><span class="n">seed</span><span class="p">)</span>
<span class="linenos"> 98</span>
<span class="linenos"> 99</span> <span class="c1"># number of samples/full trajectories (multiple environment steps)</span>
<span class="linenos">100</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">iterations</span><span class="p">):</span>
<span class="linenos">101</span> <span class="n">ac</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">action_space</span><span class="o">.</span><span class="n">sample</span><span class="p">()</span>
<span class="linenos">102</span> <span class="n">obs</span><span class="p">,</span> <span class="n">reward</span><span class="p">,</span> <span class="n">terminated</span><span class="p">,</span> <span class="n">truncated</span><span class="p">,</span> <span class="n">info</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">step</span><span class="p">(</span><span class="n">ac</span><span class="p">)</span>
<span class="linenos">103</span> <span class="n">rewards</span> <span class="o">+=</span> <span class="n">reward</span>
<span class="linenos">104</span>
<span class="linenos">105</span> <span class="k">if</span> <span class="n">terminated</span> <span class="ow">or</span> <span class="n">truncated</span><span class="p">:</span>
<span class="linenos">106</span> <span class="nb">print</span><span class="p">(</span><span class="n">base_env_id</span><span class="p">,</span> <span class="n">rewards</span><span class="p">)</span>
<span class="linenos">107</span> <span class="n">rewards</span> <span class="o">=</span> <span class="mi">0</span>
<span class="linenos">108</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">(</span><span class="n">seed</span><span class="o">=</span><span class="n">seed</span><span class="o">+</span><span class="n">i</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span>
<span class="linenos">109</span>
<span class="linenos">110</span> <span class="k">if</span> <span class="n">terminated</span> <span class="ow">or</span> <span class="n">truncated</span><span class="p">:</span>
<span class="linenos">111</span> <span class="nb">print</span><span class="p">(</span><span class="n">base_env_id</span><span class="p">,</span> <span class="n">rewards</span><span class="p">)</span>
<span class="linenos">112</span> <span class="n">rewards</span> <span class="o">=</span> <span class="mi">0</span>
<span class="linenos">113</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos">114</span>
<span class="linenos">115</span> <span class="n">env</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
<span class="linenos">116</span> <span class="k">del</span> <span class="n">env</span>
<span class="linenos">117</span>
<span class="linenos">118</span>
<span class="linenos">119</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">&#39;__main__&#39;</span><span class="p">:</span>
<span class="linenos">120</span> <span class="c1"># Disclaimer: MetaWorld environments require the seed to be specified in the beginning.</span>
<span class="linenos">121</span> <span class="c1"># Adjusting it afterwards with env.seed() is not recommended as it may not affect the underlying behavior.</span>
<span class="linenos">122</span>
<span class="linenos">123</span> <span class="c1"># For rendering it might be necessary to specify your OpenGL installation</span>
<span class="linenos">124</span> <span class="c1"># export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libGLEW.so</span>
<span class="linenos">125</span> <span class="n">render</span> <span class="o">=</span> <span class="kc">False</span>
<span class="linenos">126</span>
<span class="linenos">127</span> <span class="c1"># # Standard Meta world tasks</span>
<span class="linenos">128</span> <span class="n">example_meta</span><span class="p">(</span><span class="s2">&quot;metaworld/button-press-v2&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">500</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">129</span>
<span class="linenos">130</span> <span class="c1"># # MP + MetaWorld hybrid task provided in the our framework</span>
<span class="linenos">131</span> <span class="n">example_meta</span><span class="p">(</span><span class="s2">&quot;metaworld_ProMP/ButtonPress-v2&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">132</span> <span class="c1">#</span>
<span class="linenos">133</span> <span class="c1"># # Custom MetaWorld task</span>
<span class="linenos">134</span> <span class="n">example_custom_meta_and_mp</span><span class="p">(</span><span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">110</span> <span class="n">env</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
<span class="linenos">111</span> <span class="k">del</span> <span class="n">env</span>
<span class="linenos">112</span>
<span class="linenos">113</span><span class="k">def</span> <span class="nf">main</span><span class="p">(</span><span class="n">render</span> <span class="o">=</span> <span class="kc">False</span><span class="p">):</span>
<span class="linenos">114</span> <span class="c1"># For rendering it might be necessary to specify your OpenGL installation</span>
<span class="linenos">115</span> <span class="c1"># export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libGLEW.so</span>
<span class="linenos">116</span>
<span class="linenos">117</span> <span class="c1"># # Standard Meta world tasks</span>
<span class="linenos">118</span> <span class="n">example_meta</span><span class="p">(</span><span class="s2">&quot;metaworld/button-press-v2&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">500</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">119</span>
<span class="linenos">120</span> <span class="c1"># # MP + MetaWorld hybrid task provided in the our framework</span>
<span class="linenos">121</span> <span class="n">example_meta</span><span class="p">(</span><span class="s2">&quot;metaworld_ProMP/button-press-v2&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">122</span> <span class="c1">#</span>
<span class="linenos">123</span> <span class="c1"># # Custom MetaWorld task</span>
<span class="linenos">124</span> <span class="n">example_custom_meta_and_mp</span><span class="p">(</span><span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">125</span>
<span class="linenos">126</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">&#39;__main__&#39;</span><span class="p">:</span>
<span class="linenos">127</span> <span class="n">main</span><span class="p">()</span>
</pre></div>
</div>
</section>

View File

@ -4,7 +4,7 @@
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Movement Primitives Examples &mdash; Fancy Gym 0.2 documentation</title>
<title>Movement Primitives Examples &mdash; Fancy Gym 0.3.0 documentation</title>
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/style.css" type="text/css" />
@ -41,7 +41,7 @@
<img src="../_static/icon.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
0.2
0.3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
@ -135,252 +135,253 @@
<span class="linenos"> 26</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">iterations</span><span class="p">):</span>
<span class="linenos"> 27</span>
<span class="linenos"> 28</span> <span class="k">if</span> <span class="n">render</span> <span class="ow">and</span> <span class="n">i</span> <span class="o">%</span> <span class="mi">1</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<span class="linenos"> 29</span> <span class="n">env</span><span class="o">.</span><span class="n">render</span><span class="p">()</span>
<span class="linenos"> 30</span>
<span class="linenos"> 31</span> <span class="c1"># Now the action space is not the raw action but the parametrization of the trajectory generator,</span>
<span class="linenos"> 32</span> <span class="c1"># such as a ProMP</span>
<span class="linenos"> 33</span> <span class="n">ac</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">action_space</span><span class="o">.</span><span class="n">sample</span><span class="p">()</span>
<span class="linenos"> 34</span> <span class="c1"># This executes a full trajectory and gives back the context (obs) of the last step in the trajectory, or the</span>
<span class="linenos"> 35</span> <span class="c1"># full observation space of the last step, if replanning/sub-trajectory learning is used. The &#39;reward&#39; is equal</span>
<span class="linenos"> 36</span> <span class="c1"># to the return of a trajectory. Default is the sum over the step-wise rewards.</span>
<span class="linenos"> 37</span> <span class="n">obs</span><span class="p">,</span> <span class="n">reward</span><span class="p">,</span> <span class="n">terminated</span><span class="p">,</span> <span class="n">truncated</span><span class="p">,</span> <span class="n">info</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">step</span><span class="p">(</span><span class="n">ac</span><span class="p">)</span>
<span class="linenos"> 38</span> <span class="c1"># Aggregated returns</span>
<span class="linenos"> 39</span> <span class="n">returns</span> <span class="o">+=</span> <span class="n">reward</span>
<span class="linenos"> 40</span>
<span class="linenos"> 41</span> <span class="k">if</span> <span class="n">terminated</span> <span class="ow">or</span> <span class="n">truncated</span><span class="p">:</span>
<span class="linenos"> 42</span> <span class="nb">print</span><span class="p">(</span><span class="n">reward</span><span class="p">)</span>
<span class="linenos"> 43</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos"> 44</span> <span class="n">env</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
<span class="linenos"> 45</span>
<span class="linenos"> 46</span>
<span class="linenos"> 47</span><span class="k">def</span> <span class="nf">example_custom_mp</span><span class="p">(</span><span class="n">env_name</span><span class="o">=</span><span class="s2">&quot;fancy_ProMP/Reacher5d-v0&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
<span class="linenos"> 48</span><span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="linenos"> 49</span><span class="sd"> Example for running a custom movement primitive based environments.</span>
<span class="linenos"> 50</span><span class="sd"> Our already registered environments follow the same structure.</span>
<span class="linenos"> 51</span><span class="sd"> Hence, this also allows to adjust hyperparameters of the movement primitives.</span>
<span class="linenos"> 52</span><span class="sd"> Yet, we recommend the method above if you are just interested in changing those parameters for existing tasks.</span>
<span class="linenos"> 53</span><span class="sd"> We appreciate PRs for custom environments (especially MP wrappers of existing tasks) </span>
<span class="linenos"> 54</span><span class="sd"> for our repo: https://github.com/ALRhub/fancy_gym/</span>
<span class="linenos"> 55</span><span class="sd"> Args:</span>
<span class="linenos"> 56</span><span class="sd"> seed: seed</span>
<span class="linenos"> 57</span><span class="sd"> iterations: Number of rollout steps to run</span>
<span class="linenos"> 58</span><span class="sd"> render: Render the episode</span>
<span class="linenos"> 59</span>
<span class="linenos"> 60</span><span class="sd"> Returns:</span>
<span class="linenos"> 29</span> <span class="c1"># This renders the full MP trajectory</span>
<span class="linenos"> 30</span> <span class="c1"># It is only required to call render() once in the beginning, which renders every consecutive trajectory.</span>
<span class="linenos"> 31</span> <span class="n">env</span><span class="o">.</span><span class="n">render</span><span class="p">()</span>
<span class="linenos"> 32</span>
<span class="linenos"> 33</span> <span class="c1"># Now the action space is not the raw action but the parametrization of the trajectory generator,</span>
<span class="linenos"> 34</span> <span class="c1"># such as a ProMP</span>
<span class="linenos"> 35</span> <span class="n">ac</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">action_space</span><span class="o">.</span><span class="n">sample</span><span class="p">()</span>
<span class="linenos"> 36</span> <span class="c1"># This executes a full trajectory and gives back the context (obs) of the last step in the trajectory, or the</span>
<span class="linenos"> 37</span> <span class="c1"># full observation space of the last step, if replanning/sub-trajectory learning is used. The &#39;reward&#39; is equal</span>
<span class="linenos"> 38</span> <span class="c1"># to the return of a trajectory. Default is the sum over the step-wise rewards.</span>
<span class="linenos"> 39</span> <span class="n">obs</span><span class="p">,</span> <span class="n">reward</span><span class="p">,</span> <span class="n">terminated</span><span class="p">,</span> <span class="n">truncated</span><span class="p">,</span> <span class="n">info</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">step</span><span class="p">(</span><span class="n">ac</span><span class="p">)</span>
<span class="linenos"> 40</span> <span class="c1"># Aggregated returns</span>
<span class="linenos"> 41</span> <span class="n">returns</span> <span class="o">+=</span> <span class="n">reward</span>
<span class="linenos"> 42</span>
<span class="linenos"> 43</span> <span class="k">if</span> <span class="n">terminated</span> <span class="ow">or</span> <span class="n">truncated</span><span class="p">:</span>
<span class="linenos"> 44</span> <span class="nb">print</span><span class="p">(</span><span class="n">reward</span><span class="p">)</span>
<span class="linenos"> 45</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos"> 46</span> <span class="n">env</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
<span class="linenos"> 47</span>
<span class="linenos"> 48</span>
<span class="linenos"> 49</span><span class="k">def</span> <span class="nf">example_custom_mp</span><span class="p">(</span><span class="n">env_name</span><span class="o">=</span><span class="s2">&quot;fancy_ProMP/Reacher5d-v0&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
<span class="linenos"> 50</span><span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="linenos"> 51</span><span class="sd"> Example for running a custom movement primitive based environments.</span>
<span class="linenos"> 52</span><span class="sd"> Our already registered environments follow the same structure.</span>
<span class="linenos"> 53</span><span class="sd"> Hence, this also allows to adjust hyperparameters of the movement primitives.</span>
<span class="linenos"> 54</span><span class="sd"> Yet, we recommend the method above if you are just interested in changing those parameters for existing tasks.</span>
<span class="linenos"> 55</span><span class="sd"> We appreciate PRs for custom environments (especially MP wrappers of existing tasks) </span>
<span class="linenos"> 56</span><span class="sd"> for our repo: https://github.com/ALRhub/fancy_gym/</span>
<span class="linenos"> 57</span><span class="sd"> Args:</span>
<span class="linenos"> 58</span><span class="sd"> seed: seed</span>
<span class="linenos"> 59</span><span class="sd"> iterations: Number of rollout steps to run</span>
<span class="linenos"> 60</span><span class="sd"> render: Render the episode</span>
<span class="linenos"> 61</span>
<span class="linenos"> 62</span><span class="sd"> &quot;&quot;&quot;</span>
<span class="linenos"> 63</span> <span class="c1"># Changing the arguments of the black box env is possible by providing them to gym through mp_config_override.</span>
<span class="linenos"> 64</span> <span class="c1"># E.g. here for way to many basis functions</span>
<span class="linenos"> 65</span> <span class="n">env</span> <span class="o">=</span> <span class="n">gym</span><span class="o">.</span><span class="n">make</span><span class="p">(</span><span class="n">env_name</span><span class="p">,</span> <span class="n">seed</span><span class="p">,</span> <span class="n">mp_config_override</span><span class="o">=</span><span class="p">{</span><span class="s1">&#39;basis_generator_kwargs&#39;</span><span class="p">:</span> <span class="p">{</span><span class="s1">&#39;num_basis&#39;</span><span class="p">:</span> <span class="mi">1000</span><span class="p">}},</span> <span class="n">render_mode</span><span class="o">=</span><span class="s1">&#39;human&#39;</span> <span class="k">if</span> <span class="n">render</span> <span class="k">else</span> <span class="kc">None</span><span class="p">)</span>
<span class="linenos"> 66</span>
<span class="linenos"> 67</span> <span class="n">returns</span> <span class="o">=</span> <span class="mi">0</span>
<span class="linenos"> 68</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos"> 69</span>
<span class="linenos"> 70</span> <span class="c1"># This time rendering every trajectory</span>
<span class="linenos"> 71</span> <span class="k">if</span> <span class="n">render</span><span class="p">:</span>
<span class="linenos"> 72</span> <span class="n">env</span><span class="o">.</span><span class="n">render</span><span class="p">()</span>
<span class="linenos"> 73</span>
<span class="linenos"> 74</span> <span class="c1"># number of samples/full trajectories (multiple environment steps)</span>
<span class="linenos"> 75</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">iterations</span><span class="p">):</span>
<span class="linenos"> 76</span> <span class="n">ac</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">action_space</span><span class="o">.</span><span class="n">sample</span><span class="p">()</span>
<span class="linenos"> 77</span> <span class="n">obs</span><span class="p">,</span> <span class="n">reward</span><span class="p">,</span> <span class="n">terminated</span><span class="p">,</span> <span class="n">truncated</span><span class="p">,</span> <span class="n">info</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">step</span><span class="p">(</span><span class="n">ac</span><span class="p">)</span>
<span class="linenos"> 78</span> <span class="n">returns</span> <span class="o">+=</span> <span class="n">reward</span>
<span class="linenos"> 79</span>
<span class="linenos"> 80</span> <span class="k">if</span> <span class="n">terminated</span> <span class="ow">or</span> <span class="n">truncated</span><span class="p">:</span>
<span class="linenos"> 81</span> <span class="nb">print</span><span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="n">reward</span><span class="p">)</span>
<span class="linenos"> 82</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos"> 83</span>
<span class="linenos"> 84</span> <span class="n">env</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
<span class="linenos"> 85</span> <span class="k">return</span> <span class="n">obs</span>
<span class="linenos"> 86</span>
<span class="linenos"> 87</span><span class="k">class</span> <span class="nc">Custom_MPWrapper</span><span class="p">(</span><span class="n">fancy_gym</span><span class="o">.</span><span class="n">envs</span><span class="o">.</span><span class="n">mujoco</span><span class="o">.</span><span class="n">reacher</span><span class="o">.</span><span class="n">MPWrapper</span><span class="p">):</span>
<span class="linenos"> 88</span> <span class="n">mp_config</span> <span class="o">=</span> <span class="p">{</span>
<span class="linenos"> 89</span> <span class="s1">&#39;ProMP&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="linenos"> 90</span> <span class="s1">&#39;trajectory_generator_kwargs&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="linenos"> 91</span> <span class="s1">&#39;trajectory_generator_type&#39;</span><span class="p">:</span> <span class="s1">&#39;promp&#39;</span><span class="p">,</span>
<span class="linenos"> 92</span> <span class="s1">&#39;weights_scale&#39;</span><span class="p">:</span> <span class="mi">2</span>
<span class="linenos"> 93</span> <span class="p">},</span>
<span class="linenos"> 94</span> <span class="s1">&#39;phase_generator_kwargs&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="linenos"> 95</span> <span class="s1">&#39;phase_generator_type&#39;</span><span class="p">:</span> <span class="s1">&#39;linear&#39;</span>
<span class="linenos"> 96</span> <span class="p">},</span>
<span class="linenos"> 97</span> <span class="s1">&#39;controller_kwargs&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="linenos"> 98</span> <span class="s1">&#39;controller_type&#39;</span><span class="p">:</span> <span class="s1">&#39;velocity&#39;</span>
<span class="linenos"> 99</span> <span class="p">},</span>
<span class="linenos">100</span> <span class="s1">&#39;basis_generator_kwargs&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="linenos">101</span> <span class="s1">&#39;basis_generator_type&#39;</span><span class="p">:</span> <span class="s1">&#39;zero_rbf&#39;</span><span class="p">,</span>
<span class="linenos">102</span> <span class="s1">&#39;num_basis&#39;</span><span class="p">:</span> <span class="mi">5</span><span class="p">,</span>
<span class="linenos">103</span> <span class="s1">&#39;num_basis_zero_start&#39;</span><span class="p">:</span> <span class="mi">1</span>
<span class="linenos">104</span> <span class="p">}</span>
<span class="linenos">105</span> <span class="p">},</span>
<span class="linenos">106</span> <span class="s1">&#39;DMP&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="linenos">107</span> <span class="s1">&#39;trajectory_generator_kwargs&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="linenos">108</span> <span class="s1">&#39;trajectory_generator_type&#39;</span><span class="p">:</span> <span class="s1">&#39;dmp&#39;</span><span class="p">,</span>
<span class="linenos">109</span> <span class="s1">&#39;weights_scale&#39;</span><span class="p">:</span> <span class="mi">500</span>
<span class="linenos">110</span> <span class="p">},</span>
<span class="linenos">111</span> <span class="s1">&#39;phase_generator_kwargs&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="linenos">112</span> <span class="s1">&#39;phase_generator_type&#39;</span><span class="p">:</span> <span class="s1">&#39;exp&#39;</span><span class="p">,</span>
<span class="linenos">113</span> <span class="s1">&#39;alpha_phase&#39;</span><span class="p">:</span> <span class="mf">2.5</span>
<span class="linenos">114</span> <span class="p">},</span>
<span class="linenos">115</span> <span class="s1">&#39;controller_kwargs&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="linenos">116</span> <span class="s1">&#39;controller_type&#39;</span><span class="p">:</span> <span class="s1">&#39;velocity&#39;</span>
<span class="linenos">117</span> <span class="p">},</span>
<span class="linenos">118</span> <span class="s1">&#39;basis_generator_kwargs&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="linenos">119</span> <span class="s1">&#39;basis_generator_type&#39;</span><span class="p">:</span> <span class="s1">&#39;rbf&#39;</span><span class="p">,</span>
<span class="linenos">120</span> <span class="s1">&#39;num_basis&#39;</span><span class="p">:</span> <span class="mi">5</span>
<span class="linenos">121</span> <span class="p">}</span>
<span class="linenos">122</span> <span class="p">}</span>
<span class="linenos">123</span> <span class="p">}</span>
<span class="linenos">124</span>
<span class="linenos">125</span>
<span class="linenos">126</span><span class="k">def</span> <span class="nf">example_fully_custom_mp</span><span class="p">(</span><span class="n">seed</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
<span class="linenos">127</span><span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="linenos">128</span><span class="sd"> Example for running a custom movement primitive based environments.</span>
<span class="linenos">129</span><span class="sd"> Our already registered environments follow the same structure.</span>
<span class="linenos">130</span><span class="sd"> Hence, this also allows to adjust hyperparameters of the movement primitives.</span>
<span class="linenos">131</span><span class="sd"> Yet, we recommend the method above if you are just interested in changing those parameters for existing tasks.</span>
<span class="linenos">132</span><span class="sd"> We appreciate PRs for custom environments (especially MP wrappers of existing tasks) </span>
<span class="linenos">133</span><span class="sd"> for our repo: https://github.com/ALRhub/fancy_gym/</span>
<span class="linenos">134</span><span class="sd"> Args:</span>
<span class="linenos">135</span><span class="sd"> seed: seed</span>
<span class="linenos">136</span><span class="sd"> iterations: Number of rollout steps to run</span>
<span class="linenos">137</span><span class="sd"> render: Render the episode</span>
<span class="linenos">138</span>
<span class="linenos">139</span><span class="sd"> Returns:</span>
<span class="linenos"> 62</span><span class="sd"> Returns:</span>
<span class="linenos"> 63</span>
<span class="linenos"> 64</span><span class="sd"> &quot;&quot;&quot;</span>
<span class="linenos"> 65</span> <span class="c1"># Changing the arguments of the black box env is possible by providing them to gym through mp_config_override.</span>
<span class="linenos"> 66</span> <span class="c1"># E.g. here for way to many basis functions</span>
<span class="linenos"> 67</span> <span class="n">env</span> <span class="o">=</span> <span class="n">gym</span><span class="o">.</span><span class="n">make</span><span class="p">(</span><span class="n">env_name</span><span class="p">,</span> <span class="n">seed</span><span class="p">,</span> <span class="n">mp_config_override</span><span class="o">=</span><span class="p">{</span><span class="s1">&#39;basis_generator_kwargs&#39;</span><span class="p">:</span> <span class="p">{</span><span class="s1">&#39;num_basis&#39;</span><span class="p">:</span> <span class="mi">1000</span><span class="p">}},</span> <span class="n">render_mode</span><span class="o">=</span><span class="s1">&#39;human&#39;</span> <span class="k">if</span> <span class="n">render</span> <span class="k">else</span> <span class="kc">None</span><span class="p">)</span>
<span class="linenos"> 68</span>
<span class="linenos"> 69</span> <span class="n">returns</span> <span class="o">=</span> <span class="mi">0</span>
<span class="linenos"> 70</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos"> 71</span>
<span class="linenos"> 72</span> <span class="c1"># This time rendering every trajectory</span>
<span class="linenos"> 73</span> <span class="k">if</span> <span class="n">render</span><span class="p">:</span>
<span class="linenos"> 74</span> <span class="n">env</span><span class="o">.</span><span class="n">render</span><span class="p">()</span>
<span class="linenos"> 75</span>
<span class="linenos"> 76</span> <span class="c1"># number of samples/full trajectories (multiple environment steps)</span>
<span class="linenos"> 77</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">iterations</span><span class="p">):</span>
<span class="linenos"> 78</span> <span class="n">ac</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">action_space</span><span class="o">.</span><span class="n">sample</span><span class="p">()</span>
<span class="linenos"> 79</span> <span class="n">obs</span><span class="p">,</span> <span class="n">reward</span><span class="p">,</span> <span class="n">terminated</span><span class="p">,</span> <span class="n">truncated</span><span class="p">,</span> <span class="n">info</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">step</span><span class="p">(</span><span class="n">ac</span><span class="p">)</span>
<span class="linenos"> 80</span> <span class="n">returns</span> <span class="o">+=</span> <span class="n">reward</span>
<span class="linenos"> 81</span>
<span class="linenos"> 82</span> <span class="k">if</span> <span class="n">terminated</span> <span class="ow">or</span> <span class="n">truncated</span><span class="p">:</span>
<span class="linenos"> 83</span> <span class="nb">print</span><span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="n">reward</span><span class="p">)</span>
<span class="linenos"> 84</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos"> 85</span>
<span class="linenos"> 86</span> <span class="n">env</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
<span class="linenos"> 87</span> <span class="k">return</span> <span class="n">obs</span>
<span class="linenos"> 88</span>
<span class="linenos"> 89</span><span class="k">class</span> <span class="nc">Custom_MPWrapper</span><span class="p">(</span><span class="n">fancy_gym</span><span class="o">.</span><span class="n">envs</span><span class="o">.</span><span class="n">mujoco</span><span class="o">.</span><span class="n">reacher</span><span class="o">.</span><span class="n">MPWrapper</span><span class="p">):</span>
<span class="linenos"> 90</span> <span class="n">mp_config</span> <span class="o">=</span> <span class="p">{</span>
<span class="linenos"> 91</span> <span class="s1">&#39;ProMP&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="linenos"> 92</span> <span class="s1">&#39;trajectory_generator_kwargs&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="linenos"> 93</span> <span class="s1">&#39;trajectory_generator_type&#39;</span><span class="p">:</span> <span class="s1">&#39;promp&#39;</span><span class="p">,</span>
<span class="linenos"> 94</span> <span class="s1">&#39;weights_scale&#39;</span><span class="p">:</span> <span class="mi">2</span>
<span class="linenos"> 95</span> <span class="p">},</span>
<span class="linenos"> 96</span> <span class="s1">&#39;phase_generator_kwargs&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="linenos"> 97</span> <span class="s1">&#39;phase_generator_type&#39;</span><span class="p">:</span> <span class="s1">&#39;linear&#39;</span>
<span class="linenos"> 98</span> <span class="p">},</span>
<span class="linenos"> 99</span> <span class="s1">&#39;controller_kwargs&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="linenos">100</span> <span class="s1">&#39;controller_type&#39;</span><span class="p">:</span> <span class="s1">&#39;velocity&#39;</span>
<span class="linenos">101</span> <span class="p">},</span>
<span class="linenos">102</span> <span class="s1">&#39;basis_generator_kwargs&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="linenos">103</span> <span class="s1">&#39;basis_generator_type&#39;</span><span class="p">:</span> <span class="s1">&#39;zero_rbf&#39;</span><span class="p">,</span>
<span class="linenos">104</span> <span class="s1">&#39;num_basis&#39;</span><span class="p">:</span> <span class="mi">5</span><span class="p">,</span>
<span class="linenos">105</span> <span class="s1">&#39;num_basis_zero_start&#39;</span><span class="p">:</span> <span class="mi">1</span>
<span class="linenos">106</span> <span class="p">}</span>
<span class="linenos">107</span> <span class="p">},</span>
<span class="linenos">108</span> <span class="s1">&#39;DMP&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="linenos">109</span> <span class="s1">&#39;trajectory_generator_kwargs&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="linenos">110</span> <span class="s1">&#39;trajectory_generator_type&#39;</span><span class="p">:</span> <span class="s1">&#39;dmp&#39;</span><span class="p">,</span>
<span class="linenos">111</span> <span class="s1">&#39;weights_scale&#39;</span><span class="p">:</span> <span class="mi">500</span>
<span class="linenos">112</span> <span class="p">},</span>
<span class="linenos">113</span> <span class="s1">&#39;phase_generator_kwargs&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="linenos">114</span> <span class="s1">&#39;phase_generator_type&#39;</span><span class="p">:</span> <span class="s1">&#39;exp&#39;</span><span class="p">,</span>
<span class="linenos">115</span> <span class="s1">&#39;alpha_phase&#39;</span><span class="p">:</span> <span class="mf">2.5</span>
<span class="linenos">116</span> <span class="p">},</span>
<span class="linenos">117</span> <span class="s1">&#39;controller_kwargs&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="linenos">118</span> <span class="s1">&#39;controller_type&#39;</span><span class="p">:</span> <span class="s1">&#39;velocity&#39;</span>
<span class="linenos">119</span> <span class="p">},</span>
<span class="linenos">120</span> <span class="s1">&#39;basis_generator_kwargs&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="linenos">121</span> <span class="s1">&#39;basis_generator_type&#39;</span><span class="p">:</span> <span class="s1">&#39;rbf&#39;</span><span class="p">,</span>
<span class="linenos">122</span> <span class="s1">&#39;num_basis&#39;</span><span class="p">:</span> <span class="mi">5</span>
<span class="linenos">123</span> <span class="p">}</span>
<span class="linenos">124</span> <span class="p">}</span>
<span class="linenos">125</span> <span class="p">}</span>
<span class="linenos">126</span>
<span class="linenos">127</span>
<span class="linenos">128</span><span class="k">def</span> <span class="nf">example_fully_custom_mp</span><span class="p">(</span><span class="n">seed</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
<span class="linenos">129</span><span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="linenos">130</span><span class="sd"> Example for running a custom movement primitive based environments.</span>
<span class="linenos">131</span><span class="sd"> Our already registered environments follow the same structure.</span>
<span class="linenos">132</span><span class="sd"> Hence, this also allows to adjust hyperparameters of the movement primitives.</span>
<span class="linenos">133</span><span class="sd"> Yet, we recommend the method above if you are just interested in changing those parameters for existing tasks.</span>
<span class="linenos">134</span><span class="sd"> We appreciate PRs for custom environments (especially MP wrappers of existing tasks) </span>
<span class="linenos">135</span><span class="sd"> for our repo: https://github.com/ALRhub/fancy_gym/</span>
<span class="linenos">136</span><span class="sd"> Args:</span>
<span class="linenos">137</span><span class="sd"> seed: seed</span>
<span class="linenos">138</span><span class="sd"> iterations: Number of rollout steps to run</span>
<span class="linenos">139</span><span class="sd"> render: Render the episode</span>
<span class="linenos">140</span>
<span class="linenos">141</span><span class="sd"> &quot;&quot;&quot;</span>
<span class="linenos">141</span><span class="sd"> Returns:</span>
<span class="linenos">142</span>
<span class="linenos">143</span> <span class="n">base_env_id</span> <span class="o">=</span> <span class="s2">&quot;fancy/Reacher5d-v0&quot;</span>
<span class="linenos">144</span> <span class="n">custom_env_id</span> <span class="o">=</span> <span class="s2">&quot;fancy/Reacher5d-Custom-v0&quot;</span>
<span class="linenos">145</span> <span class="n">custom_env_id_DMP</span> <span class="o">=</span> <span class="s2">&quot;fancy_DMP/Reacher5d-Custom-v0&quot;</span>
<span class="linenos">146</span> <span class="n">custom_env_id_ProMP</span> <span class="o">=</span> <span class="s2">&quot;fancy_ProMP/Reacher5d-Custom-v0&quot;</span>
<span class="linenos">147</span>
<span class="linenos">148</span> <span class="n">fancy_gym</span><span class="o">.</span><span class="n">upgrade</span><span class="p">(</span><span class="n">custom_env_id</span><span class="p">,</span> <span class="n">mp_wrapper</span><span class="o">=</span><span class="n">Custom_MPWrapper</span><span class="p">,</span> <span class="n">add_mp_types</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;ProMP&#39;</span><span class="p">,</span> <span class="s1">&#39;DMP&#39;</span><span class="p">],</span> <span class="n">base_id</span><span class="o">=</span><span class="n">base_env_id</span><span class="p">)</span>
<span class="linenos">143</span><span class="sd"> &quot;&quot;&quot;</span>
<span class="linenos">144</span>
<span class="linenos">145</span> <span class="n">base_env_id</span> <span class="o">=</span> <span class="s2">&quot;fancy/Reacher5d-v0&quot;</span>
<span class="linenos">146</span> <span class="n">custom_env_id</span> <span class="o">=</span> <span class="s2">&quot;fancy/Reacher5d-Custom-v0&quot;</span>
<span class="linenos">147</span> <span class="n">custom_env_id_DMP</span> <span class="o">=</span> <span class="s2">&quot;fancy_DMP/Reacher5d-Custom-v0&quot;</span>
<span class="linenos">148</span> <span class="n">custom_env_id_ProMP</span> <span class="o">=</span> <span class="s2">&quot;fancy_ProMP/Reacher5d-Custom-v0&quot;</span>
<span class="linenos">149</span>
<span class="linenos">150</span> <span class="n">env</span> <span class="o">=</span> <span class="n">gym</span><span class="o">.</span><span class="n">make</span><span class="p">(</span><span class="n">custom_env_id_ProMP</span><span class="p">,</span> <span class="n">render_mode</span><span class="o">=</span><span class="s1">&#39;human&#39;</span> <span class="k">if</span> <span class="n">render</span> <span class="k">else</span> <span class="kc">None</span><span class="p">)</span>
<span class="linenos">150</span> <span class="n">fancy_gym</span><span class="o">.</span><span class="n">upgrade</span><span class="p">(</span><span class="n">custom_env_id</span><span class="p">,</span> <span class="n">mp_wrapper</span><span class="o">=</span><span class="n">Custom_MPWrapper</span><span class="p">,</span> <span class="n">add_mp_types</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;ProMP&#39;</span><span class="p">,</span> <span class="s1">&#39;DMP&#39;</span><span class="p">],</span> <span class="n">base_id</span><span class="o">=</span><span class="n">base_env_id</span><span class="p">)</span>
<span class="linenos">151</span>
<span class="linenos">152</span> <span class="n">rewards</span> <span class="o">=</span> <span class="mi">0</span>
<span class="linenos">153</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos">154</span>
<span class="linenos">155</span> <span class="k">if</span> <span class="n">render</span><span class="p">:</span>
<span class="linenos">156</span> <span class="n">env</span><span class="o">.</span><span class="n">render</span><span class="p">()</span>
<span class="linenos">157</span>
<span class="linenos">158</span> <span class="c1"># number of samples/full trajectories (multiple environment steps)</span>
<span class="linenos">159</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">iterations</span><span class="p">):</span>
<span class="linenos">160</span> <span class="n">ac</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">action_space</span><span class="o">.</span><span class="n">sample</span><span class="p">()</span>
<span class="linenos">161</span> <span class="n">obs</span><span class="p">,</span> <span class="n">reward</span><span class="p">,</span> <span class="n">terminated</span><span class="p">,</span> <span class="n">truncated</span><span class="p">,</span> <span class="n">info</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">step</span><span class="p">(</span><span class="n">ac</span><span class="p">)</span>
<span class="linenos">162</span> <span class="n">rewards</span> <span class="o">+=</span> <span class="n">reward</span>
<span class="linenos">163</span>
<span class="linenos">164</span> <span class="k">if</span> <span class="n">terminated</span> <span class="ow">or</span> <span class="n">truncated</span><span class="p">:</span>
<span class="linenos">165</span> <span class="nb">print</span><span class="p">(</span><span class="n">rewards</span><span class="p">)</span>
<span class="linenos">166</span> <span class="n">rewards</span> <span class="o">=</span> <span class="mi">0</span>
<span class="linenos">167</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos">168</span>
<span class="linenos">169</span> <span class="k">try</span><span class="p">:</span> <span class="c1"># Some mujoco-based envs don&#39;t correlcty implement .close</span>
<span class="linenos">170</span> <span class="n">env</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
<span class="linenos">171</span> <span class="k">except</span><span class="p">:</span>
<span class="linenos">172</span> <span class="k">pass</span>
<span class="linenos">173</span>
<span class="linenos">174</span>
<span class="linenos">175</span><span class="k">def</span> <span class="nf">example_fully_custom_mp_alternative</span><span class="p">(</span><span class="n">seed</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
<span class="linenos">176</span><span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="linenos">177</span><span class="sd"> Instead of defining the mp_args in a new custom MP_Wrapper, they can also be provided during registration.</span>
<span class="linenos">178</span><span class="sd"> Args:</span>
<span class="linenos">179</span><span class="sd"> seed: seed</span>
<span class="linenos">180</span><span class="sd"> iterations: Number of rollout steps to run</span>
<span class="linenos">181</span><span class="sd"> render: Render the episode</span>
<span class="linenos">182</span>
<span class="linenos">183</span><span class="sd"> Returns:</span>
<span class="linenos">152</span> <span class="n">env</span> <span class="o">=</span> <span class="n">gym</span><span class="o">.</span><span class="n">make</span><span class="p">(</span><span class="n">custom_env_id_ProMP</span><span class="p">,</span> <span class="n">render_mode</span><span class="o">=</span><span class="s1">&#39;human&#39;</span> <span class="k">if</span> <span class="n">render</span> <span class="k">else</span> <span class="kc">None</span><span class="p">)</span>
<span class="linenos">153</span>
<span class="linenos">154</span> <span class="n">rewards</span> <span class="o">=</span> <span class="mi">0</span>
<span class="linenos">155</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos">156</span>
<span class="linenos">157</span> <span class="k">if</span> <span class="n">render</span><span class="p">:</span>
<span class="linenos">158</span> <span class="n">env</span><span class="o">.</span><span class="n">render</span><span class="p">()</span>
<span class="linenos">159</span>
<span class="linenos">160</span> <span class="c1"># number of samples/full trajectories (multiple environment steps)</span>
<span class="linenos">161</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">iterations</span><span class="p">):</span>
<span class="linenos">162</span> <span class="n">ac</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">action_space</span><span class="o">.</span><span class="n">sample</span><span class="p">()</span>
<span class="linenos">163</span> <span class="n">obs</span><span class="p">,</span> <span class="n">reward</span><span class="p">,</span> <span class="n">terminated</span><span class="p">,</span> <span class="n">truncated</span><span class="p">,</span> <span class="n">info</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">step</span><span class="p">(</span><span class="n">ac</span><span class="p">)</span>
<span class="linenos">164</span> <span class="n">rewards</span> <span class="o">+=</span> <span class="n">reward</span>
<span class="linenos">165</span>
<span class="linenos">166</span> <span class="k">if</span> <span class="n">terminated</span> <span class="ow">or</span> <span class="n">truncated</span><span class="p">:</span>
<span class="linenos">167</span> <span class="nb">print</span><span class="p">(</span><span class="n">rewards</span><span class="p">)</span>
<span class="linenos">168</span> <span class="n">rewards</span> <span class="o">=</span> <span class="mi">0</span>
<span class="linenos">169</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos">170</span>
<span class="linenos">171</span> <span class="k">try</span><span class="p">:</span> <span class="c1"># Some mujoco-based envs don&#39;t correlcty implement .close</span>
<span class="linenos">172</span> <span class="n">env</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
<span class="linenos">173</span> <span class="k">except</span><span class="p">:</span>
<span class="linenos">174</span> <span class="k">pass</span>
<span class="linenos">175</span>
<span class="linenos">176</span>
<span class="linenos">177</span><span class="k">def</span> <span class="nf">example_fully_custom_mp_alternative</span><span class="p">(</span><span class="n">seed</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
<span class="linenos">178</span><span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="linenos">179</span><span class="sd"> Instead of defining the mp_args in a new custom MP_Wrapper, they can also be provided during registration.</span>
<span class="linenos">180</span><span class="sd"> Args:</span>
<span class="linenos">181</span><span class="sd"> seed: seed</span>
<span class="linenos">182</span><span class="sd"> iterations: Number of rollout steps to run</span>
<span class="linenos">183</span><span class="sd"> render: Render the episode</span>
<span class="linenos">184</span>
<span class="linenos">185</span><span class="sd"> &quot;&quot;&quot;</span>
<span class="linenos">185</span><span class="sd"> Returns:</span>
<span class="linenos">186</span>
<span class="linenos">187</span> <span class="n">base_env_id</span> <span class="o">=</span> <span class="s2">&quot;fancy/Reacher5d-v0&quot;</span>
<span class="linenos">188</span> <span class="n">custom_env_id</span> <span class="o">=</span> <span class="s2">&quot;fancy/Reacher5d-Custom-v0&quot;</span>
<span class="linenos">189</span> <span class="n">custom_env_id_ProMP</span> <span class="o">=</span> <span class="s2">&quot;fancy_ProMP/Reacher5d-Custom-v0&quot;</span>
<span class="linenos">190</span>
<span class="linenos">191</span> <span class="n">fancy_gym</span><span class="o">.</span><span class="n">upgrade</span><span class="p">(</span><span class="n">custom_env_id</span><span class="p">,</span> <span class="n">mp_wrapper</span><span class="o">=</span><span class="n">fancy_gym</span><span class="o">.</span><span class="n">envs</span><span class="o">.</span><span class="n">mujoco</span><span class="o">.</span><span class="n">reacher</span><span class="o">.</span><span class="n">MPWrapper</span><span class="p">,</span> <span class="n">add_mp_types</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;ProMP&#39;</span><span class="p">],</span> <span class="n">base_id</span><span class="o">=</span><span class="n">base_env_id</span><span class="p">,</span> <span class="n">mp_config_override</span><span class="o">=</span> <span class="p">{</span><span class="s1">&#39;ProMP&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="linenos">192</span> <span class="s1">&#39;trajectory_generator_kwargs&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="linenos">193</span> <span class="s1">&#39;trajectory_generator_type&#39;</span><span class="p">:</span> <span class="s1">&#39;promp&#39;</span><span class="p">,</span>
<span class="linenos">194</span> <span class="s1">&#39;weights_scale&#39;</span><span class="p">:</span> <span class="mi">2</span>
<span class="linenos">195</span> <span class="p">},</span>
<span class="linenos">196</span> <span class="s1">&#39;phase_generator_kwargs&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="linenos">197</span> <span class="s1">&#39;phase_generator_type&#39;</span><span class="p">:</span> <span class="s1">&#39;linear&#39;</span>
<span class="linenos">198</span> <span class="p">},</span>
<span class="linenos">199</span> <span class="s1">&#39;controller_kwargs&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="linenos">200</span> <span class="s1">&#39;controller_type&#39;</span><span class="p">:</span> <span class="s1">&#39;velocity&#39;</span>
<span class="linenos">201</span> <span class="p">},</span>
<span class="linenos">202</span> <span class="s1">&#39;basis_generator_kwargs&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="linenos">203</span> <span class="s1">&#39;basis_generator_type&#39;</span><span class="p">:</span> <span class="s1">&#39;zero_rbf&#39;</span><span class="p">,</span>
<span class="linenos">204</span> <span class="s1">&#39;num_basis&#39;</span><span class="p">:</span> <span class="mi">5</span><span class="p">,</span>
<span class="linenos">205</span> <span class="s1">&#39;num_basis_zero_start&#39;</span><span class="p">:</span> <span class="mi">1</span>
<span class="linenos">206</span> <span class="p">}</span>
<span class="linenos">207</span> <span class="p">}})</span>
<span class="linenos">208</span>
<span class="linenos">209</span> <span class="n">env</span> <span class="o">=</span> <span class="n">gym</span><span class="o">.</span><span class="n">make</span><span class="p">(</span><span class="n">custom_env_id_ProMP</span><span class="p">,</span> <span class="n">render_mode</span><span class="o">=</span><span class="s1">&#39;human&#39;</span> <span class="k">if</span> <span class="n">render</span> <span class="k">else</span> <span class="kc">None</span><span class="p">)</span>
<span class="linenos">187</span><span class="sd"> &quot;&quot;&quot;</span>
<span class="linenos">188</span>
<span class="linenos">189</span> <span class="n">base_env_id</span> <span class="o">=</span> <span class="s2">&quot;fancy/Reacher5d-v0&quot;</span>
<span class="linenos">190</span> <span class="n">custom_env_id</span> <span class="o">=</span> <span class="s2">&quot;fancy/Reacher5d-Custom-v0&quot;</span>
<span class="linenos">191</span> <span class="n">custom_env_id_ProMP</span> <span class="o">=</span> <span class="s2">&quot;fancy_ProMP/Reacher5d-Custom-v0&quot;</span>
<span class="linenos">192</span>
<span class="linenos">193</span> <span class="n">fancy_gym</span><span class="o">.</span><span class="n">upgrade</span><span class="p">(</span><span class="n">custom_env_id</span><span class="p">,</span> <span class="n">mp_wrapper</span><span class="o">=</span><span class="n">fancy_gym</span><span class="o">.</span><span class="n">envs</span><span class="o">.</span><span class="n">mujoco</span><span class="o">.</span><span class="n">reacher</span><span class="o">.</span><span class="n">MPWrapper</span><span class="p">,</span> <span class="n">add_mp_types</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;ProMP&#39;</span><span class="p">],</span> <span class="n">base_id</span><span class="o">=</span><span class="n">base_env_id</span><span class="p">,</span> <span class="n">mp_config_override</span><span class="o">=</span> <span class="p">{</span><span class="s1">&#39;ProMP&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="linenos">194</span> <span class="s1">&#39;trajectory_generator_kwargs&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="linenos">195</span> <span class="s1">&#39;trajectory_generator_type&#39;</span><span class="p">:</span> <span class="s1">&#39;promp&#39;</span><span class="p">,</span>
<span class="linenos">196</span> <span class="s1">&#39;weights_scale&#39;</span><span class="p">:</span> <span class="mi">2</span>
<span class="linenos">197</span> <span class="p">},</span>
<span class="linenos">198</span> <span class="s1">&#39;phase_generator_kwargs&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="linenos">199</span> <span class="s1">&#39;phase_generator_type&#39;</span><span class="p">:</span> <span class="s1">&#39;linear&#39;</span>
<span class="linenos">200</span> <span class="p">},</span>
<span class="linenos">201</span> <span class="s1">&#39;controller_kwargs&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="linenos">202</span> <span class="s1">&#39;controller_type&#39;</span><span class="p">:</span> <span class="s1">&#39;velocity&#39;</span>
<span class="linenos">203</span> <span class="p">},</span>
<span class="linenos">204</span> <span class="s1">&#39;basis_generator_kwargs&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="linenos">205</span> <span class="s1">&#39;basis_generator_type&#39;</span><span class="p">:</span> <span class="s1">&#39;zero_rbf&#39;</span><span class="p">,</span>
<span class="linenos">206</span> <span class="s1">&#39;num_basis&#39;</span><span class="p">:</span> <span class="mi">5</span><span class="p">,</span>
<span class="linenos">207</span> <span class="s1">&#39;num_basis_zero_start&#39;</span><span class="p">:</span> <span class="mi">1</span>
<span class="linenos">208</span> <span class="p">}</span>
<span class="linenos">209</span> <span class="p">}})</span>
<span class="linenos">210</span>
<span class="linenos">211</span> <span class="n">rewards</span> <span class="o">=</span> <span class="mi">0</span>
<span class="linenos">212</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos">213</span>
<span class="linenos">214</span> <span class="k">if</span> <span class="n">render</span><span class="p">:</span>
<span class="linenos">215</span> <span class="n">env</span><span class="o">.</span><span class="n">render</span><span class="p">()</span>
<span class="linenos">216</span>
<span class="linenos">217</span> <span class="c1"># number of samples/full trajectories (multiple environment steps)</span>
<span class="linenos">218</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">iterations</span><span class="p">):</span>
<span class="linenos">219</span> <span class="n">ac</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">action_space</span><span class="o">.</span><span class="n">sample</span><span class="p">()</span>
<span class="linenos">220</span> <span class="n">obs</span><span class="p">,</span> <span class="n">reward</span><span class="p">,</span> <span class="n">terminated</span><span class="p">,</span> <span class="n">truncated</span><span class="p">,</span> <span class="n">info</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">step</span><span class="p">(</span><span class="n">ac</span><span class="p">)</span>
<span class="linenos">221</span> <span class="n">rewards</span> <span class="o">+=</span> <span class="n">reward</span>
<span class="linenos">222</span>
<span class="linenos">223</span> <span class="k">if</span> <span class="n">terminated</span> <span class="ow">or</span> <span class="n">truncated</span><span class="p">:</span>
<span class="linenos">224</span> <span class="nb">print</span><span class="p">(</span><span class="n">rewards</span><span class="p">)</span>
<span class="linenos">225</span> <span class="n">rewards</span> <span class="o">=</span> <span class="mi">0</span>
<span class="linenos">226</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos">227</span>
<span class="linenos">228</span> <span class="k">if</span> <span class="n">render</span><span class="p">:</span>
<span class="linenos">229</span> <span class="n">env</span><span class="o">.</span><span class="n">render</span><span class="p">()</span>
<span class="linenos">230</span>
<span class="linenos">231</span> <span class="n">rewards</span> <span class="o">=</span> <span class="mi">0</span>
<span class="linenos">232</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos">233</span>
<span class="linenos">234</span> <span class="c1"># number of samples/full trajectories (multiple environment steps)</span>
<span class="linenos">235</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">iterations</span><span class="p">):</span>
<span class="linenos">236</span> <span class="n">ac</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">action_space</span><span class="o">.</span><span class="n">sample</span><span class="p">()</span>
<span class="linenos">237</span> <span class="n">obs</span><span class="p">,</span> <span class="n">reward</span><span class="p">,</span> <span class="n">terminated</span><span class="p">,</span> <span class="n">truncated</span><span class="p">,</span> <span class="n">info</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">step</span><span class="p">(</span><span class="n">ac</span><span class="p">)</span>
<span class="linenos">238</span> <span class="n">rewards</span> <span class="o">+=</span> <span class="n">reward</span>
<span class="linenos">239</span>
<span class="linenos">240</span> <span class="k">if</span> <span class="n">terminated</span> <span class="ow">or</span> <span class="n">truncated</span><span class="p">:</span>
<span class="linenos">241</span> <span class="nb">print</span><span class="p">(</span><span class="n">rewards</span><span class="p">)</span>
<span class="linenos">242</span> <span class="n">rewards</span> <span class="o">=</span> <span class="mi">0</span>
<span class="linenos">243</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos">244</span>
<span class="linenos">245</span> <span class="k">try</span><span class="p">:</span> <span class="c1"># Some mujoco-based envs don&#39;t correlcty implement .close</span>
<span class="linenos">246</span> <span class="n">env</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
<span class="linenos">247</span> <span class="k">except</span><span class="p">:</span>
<span class="linenos">248</span> <span class="k">pass</span>
<span class="linenos">249</span>
<span class="linenos">250</span>
<span class="linenos">251</span><span class="k">def</span> <span class="nf">main</span><span class="p">():</span>
<span class="linenos">252</span> <span class="n">render</span> <span class="o">=</span> <span class="kc">False</span>
<span class="linenos">253</span> <span class="c1"># DMP</span>
<span class="linenos">254</span> <span class="n">example_mp</span><span class="p">(</span><span class="s2">&quot;fancy_DMP/HoleReacher-v0&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">255</span>
<span class="linenos">256</span> <span class="c1"># ProMP</span>
<span class="linenos">257</span> <span class="n">example_mp</span><span class="p">(</span><span class="s2">&quot;fancy_ProMP/HoleReacher-v0&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">258</span> <span class="n">example_mp</span><span class="p">(</span><span class="s2">&quot;fancy_ProMP/BoxPushingTemporalSparse-v0&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">259</span> <span class="n">example_mp</span><span class="p">(</span><span class="s2">&quot;fancy_ProMP/TableTennis4D-v0&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">20</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">260</span>
<span class="linenos">261</span> <span class="c1"># ProDMP with Replanning</span>
<span class="linenos">262</span> <span class="n">example_mp</span><span class="p">(</span><span class="s2">&quot;fancy_ProDMP/BoxPushingDenseReplan-v0&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">4</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">263</span> <span class="n">example_mp</span><span class="p">(</span><span class="s2">&quot;fancy_ProDMP/TableTennis4DReplan-v0&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">20</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">264</span> <span class="n">example_mp</span><span class="p">(</span><span class="s2">&quot;fancy_ProDMP/TableTennisWindReplan-v0&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">20</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">265</span>
<span class="linenos">266</span> <span class="c1"># Altered basis functions</span>
<span class="linenos">267</span> <span class="n">obs1</span> <span class="o">=</span> <span class="n">example_custom_mp</span><span class="p">(</span><span class="s2">&quot;fancy_ProMP/Reacher5d-v0&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">268</span>
<span class="linenos">269</span> <span class="c1"># Custom MP</span>
<span class="linenos">270</span> <span class="n">example_fully_custom_mp</span><span class="p">(</span><span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">271</span> <span class="n">example_fully_custom_mp_alternative</span><span class="p">(</span><span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">272</span>
<span class="linenos">273</span><span class="k">if</span> <span class="vm">__name__</span><span class="o">==</span><span class="s1">&#39;__main__&#39;</span><span class="p">:</span>
<span class="linenos">274</span> <span class="n">main</span><span class="p">()</span>
<span class="linenos">211</span> <span class="n">env</span> <span class="o">=</span> <span class="n">gym</span><span class="o">.</span><span class="n">make</span><span class="p">(</span><span class="n">custom_env_id_ProMP</span><span class="p">,</span> <span class="n">render_mode</span><span class="o">=</span><span class="s1">&#39;human&#39;</span> <span class="k">if</span> <span class="n">render</span> <span class="k">else</span> <span class="kc">None</span><span class="p">)</span>
<span class="linenos">212</span>
<span class="linenos">213</span> <span class="n">rewards</span> <span class="o">=</span> <span class="mi">0</span>
<span class="linenos">214</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos">215</span>
<span class="linenos">216</span> <span class="k">if</span> <span class="n">render</span><span class="p">:</span>
<span class="linenos">217</span> <span class="n">env</span><span class="o">.</span><span class="n">render</span><span class="p">()</span>
<span class="linenos">218</span>
<span class="linenos">219</span> <span class="c1"># number of samples/full trajectories (multiple environment steps)</span>
<span class="linenos">220</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">iterations</span><span class="p">):</span>
<span class="linenos">221</span> <span class="n">ac</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">action_space</span><span class="o">.</span><span class="n">sample</span><span class="p">()</span>
<span class="linenos">222</span> <span class="n">obs</span><span class="p">,</span> <span class="n">reward</span><span class="p">,</span> <span class="n">terminated</span><span class="p">,</span> <span class="n">truncated</span><span class="p">,</span> <span class="n">info</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">step</span><span class="p">(</span><span class="n">ac</span><span class="p">)</span>
<span class="linenos">223</span> <span class="n">rewards</span> <span class="o">+=</span> <span class="n">reward</span>
<span class="linenos">224</span>
<span class="linenos">225</span> <span class="k">if</span> <span class="n">terminated</span> <span class="ow">or</span> <span class="n">truncated</span><span class="p">:</span>
<span class="linenos">226</span> <span class="nb">print</span><span class="p">(</span><span class="n">rewards</span><span class="p">)</span>
<span class="linenos">227</span> <span class="n">rewards</span> <span class="o">=</span> <span class="mi">0</span>
<span class="linenos">228</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos">229</span>
<span class="linenos">230</span> <span class="k">if</span> <span class="n">render</span><span class="p">:</span>
<span class="linenos">231</span> <span class="n">env</span><span class="o">.</span><span class="n">render</span><span class="p">()</span>
<span class="linenos">232</span>
<span class="linenos">233</span> <span class="n">rewards</span> <span class="o">=</span> <span class="mi">0</span>
<span class="linenos">234</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos">235</span>
<span class="linenos">236</span> <span class="c1"># number of samples/full trajectories (multiple environment steps)</span>
<span class="linenos">237</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">iterations</span><span class="p">):</span>
<span class="linenos">238</span> <span class="n">ac</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">action_space</span><span class="o">.</span><span class="n">sample</span><span class="p">()</span>
<span class="linenos">239</span> <span class="n">obs</span><span class="p">,</span> <span class="n">reward</span><span class="p">,</span> <span class="n">terminated</span><span class="p">,</span> <span class="n">truncated</span><span class="p">,</span> <span class="n">info</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">step</span><span class="p">(</span><span class="n">ac</span><span class="p">)</span>
<span class="linenos">240</span> <span class="n">rewards</span> <span class="o">+=</span> <span class="n">reward</span>
<span class="linenos">241</span>
<span class="linenos">242</span> <span class="k">if</span> <span class="n">terminated</span> <span class="ow">or</span> <span class="n">truncated</span><span class="p">:</span>
<span class="linenos">243</span> <span class="nb">print</span><span class="p">(</span><span class="n">rewards</span><span class="p">)</span>
<span class="linenos">244</span> <span class="n">rewards</span> <span class="o">=</span> <span class="mi">0</span>
<span class="linenos">245</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos">246</span>
<span class="linenos">247</span> <span class="k">try</span><span class="p">:</span> <span class="c1"># Some mujoco-based envs don&#39;t correlcty implement .close</span>
<span class="linenos">248</span> <span class="n">env</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
<span class="linenos">249</span> <span class="k">except</span><span class="p">:</span>
<span class="linenos">250</span> <span class="k">pass</span>
<span class="linenos">251</span>
<span class="linenos">252</span>
<span class="linenos">253</span><span class="k">def</span> <span class="nf">main</span><span class="p">(</span><span class="n">render</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="linenos">254</span> <span class="c1"># DMP</span>
<span class="linenos">255</span> <span class="n">example_mp</span><span class="p">(</span><span class="s2">&quot;fancy_DMP/HoleReacher-v0&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">256</span>
<span class="linenos">257</span> <span class="c1"># ProMP</span>
<span class="linenos">258</span> <span class="n">example_mp</span><span class="p">(</span><span class="s2">&quot;fancy_ProMP/HoleReacher-v0&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">259</span> <span class="n">example_mp</span><span class="p">(</span><span class="s2">&quot;fancy_ProMP/BoxPushingTemporalSparse-v0&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">260</span> <span class="n">example_mp</span><span class="p">(</span><span class="s2">&quot;fancy_ProMP/TableTennis4D-v0&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">20</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">261</span>
<span class="linenos">262</span> <span class="c1"># ProDMP with Replanning</span>
<span class="linenos">263</span> <span class="n">example_mp</span><span class="p">(</span><span class="s2">&quot;fancy_ProDMP/BoxPushingDenseReplan-v0&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">4</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">264</span> <span class="n">example_mp</span><span class="p">(</span><span class="s2">&quot;fancy_ProDMP/TableTennis4DReplan-v0&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">20</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">265</span> <span class="n">example_mp</span><span class="p">(</span><span class="s2">&quot;fancy_ProDMP/TableTennisWindReplan-v0&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">20</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">266</span>
<span class="linenos">267</span> <span class="c1"># Altered basis functions</span>
<span class="linenos">268</span> <span class="n">obs1</span> <span class="o">=</span> <span class="n">example_custom_mp</span><span class="p">(</span><span class="s2">&quot;fancy_ProMP/Reacher5d-v0&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">269</span>
<span class="linenos">270</span> <span class="c1"># Custom MP</span>
<span class="linenos">271</span> <span class="n">example_fully_custom_mp</span><span class="p">(</span><span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">272</span> <span class="n">example_fully_custom_mp_alternative</span><span class="p">(</span><span class="n">seed</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">273</span>
<span class="linenos">274</span><span class="k">if</span> <span class="vm">__name__</span><span class="o">==</span><span class="s1">&#39;__main__&#39;</span><span class="p">:</span>
<span class="linenos">275</span> <span class="n">main</span><span class="p">()</span>
</pre></div>
</div>
</section>

View File

@ -4,7 +4,7 @@
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>MP Params Tuning Example &mdash; Fancy Gym 0.2 documentation</title>
<title>MP Params Tuning Example &mdash; Fancy Gym 0.3.0 documentation</title>
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/style.css" type="text/css" />
@ -41,7 +41,7 @@
<img src="../_static/icon.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
0.2
0.3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">

View File

@ -4,7 +4,7 @@
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>OpenAI Envs Examples &mdash; Fancy Gym 0.2 documentation</title>
<title>OpenAI Envs Examples &mdash; Fancy Gym 0.3.0 documentation</title>
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/style.css" type="text/css" />
@ -41,7 +41,7 @@
<img src="../_static/icon.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
0.2
0.3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
@ -122,27 +122,27 @@
<span class="linenos">13</span><span class="sd"> Returns:</span>
<span class="linenos">14</span>
<span class="linenos">15</span><span class="sd"> &quot;&quot;&quot;</span>
<span class="linenos">16</span> <span class="n">env</span> <span class="o">=</span> <span class="n">gym</span><span class="o">.</span><span class="n">make</span><span class="p">(</span><span class="n">env_name</span><span class="p">)</span>
<span class="linenos">16</span> <span class="n">env</span> <span class="o">=</span> <span class="n">gym</span><span class="o">.</span><span class="n">make</span><span class="p">(</span><span class="n">env_name</span><span class="p">,</span> <span class="n">render_mode</span><span class="o">=</span><span class="s1">&#39;human&#39;</span> <span class="k">if</span> <span class="n">render</span> <span class="k">else</span> <span class="kc">None</span><span class="p">)</span>
<span class="linenos">17</span>
<span class="linenos">18</span> <span class="n">returns</span> <span class="o">=</span> <span class="mi">0</span>
<span class="linenos">19</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">(</span><span class="n">seed</span><span class="o">=</span><span class="n">seed</span><span class="p">)</span>
<span class="linenos">20</span> <span class="c1"># number of samples/full trajectories (multiple environment steps)</span>
<span class="linenos">21</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">10</span><span class="p">):</span>
<span class="linenos">22</span> <span class="k">if</span> <span class="n">render</span> <span class="ow">and</span> <span class="n">i</span> <span class="o">%</span> <span class="mi">2</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<span class="linenos">23</span> <span class="n">env</span><span class="o">.</span><span class="n">render</span><span class="p">(</span><span class="n">mode</span><span class="o">=</span><span class="s2">&quot;human&quot;</span><span class="p">)</span>
<span class="linenos">24</span> <span class="k">else</span><span class="p">:</span>
<span class="linenos">25</span> <span class="n">env</span><span class="o">.</span><span class="n">render</span><span class="p">()</span>
<span class="linenos">26</span> <span class="n">ac</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">action_space</span><span class="o">.</span><span class="n">sample</span><span class="p">()</span>
<span class="linenos">27</span> <span class="n">obs</span><span class="p">,</span> <span class="n">reward</span><span class="p">,</span> <span class="n">terminated</span><span class="p">,</span> <span class="n">truncated</span><span class="p">,</span> <span class="n">info</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">step</span><span class="p">(</span><span class="n">ac</span><span class="p">)</span>
<span class="linenos">28</span> <span class="n">returns</span> <span class="o">+=</span> <span class="n">reward</span>
<span class="linenos">29</span>
<span class="linenos">30</span> <span class="k">if</span> <span class="n">terminated</span> <span class="ow">or</span> <span class="n">truncated</span><span class="p">:</span>
<span class="linenos">31</span> <span class="nb">print</span><span class="p">(</span><span class="n">returns</span><span class="p">)</span>
<span class="linenos">32</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos">33</span>
<span class="linenos">23</span> <span class="n">env</span><span class="o">.</span><span class="n">render</span><span class="p">()</span>
<span class="linenos">24</span> <span class="n">ac</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">action_space</span><span class="o">.</span><span class="n">sample</span><span class="p">()</span>
<span class="linenos">25</span> <span class="n">obs</span><span class="p">,</span> <span class="n">reward</span><span class="p">,</span> <span class="n">terminated</span><span class="p">,</span> <span class="n">truncated</span><span class="p">,</span> <span class="n">info</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">step</span><span class="p">(</span><span class="n">ac</span><span class="p">)</span>
<span class="linenos">26</span> <span class="n">returns</span> <span class="o">+=</span> <span class="n">reward</span>
<span class="linenos">27</span>
<span class="linenos">28</span> <span class="k">if</span> <span class="n">terminated</span> <span class="ow">or</span> <span class="n">truncated</span><span class="p">:</span>
<span class="linenos">29</span> <span class="nb">print</span><span class="p">(</span><span class="n">returns</span><span class="p">)</span>
<span class="linenos">30</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos">31</span>
<span class="linenos">32</span><span class="k">def</span> <span class="nf">main</span><span class="p">(</span><span class="n">render</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
<span class="linenos">33</span> <span class="n">example_mp</span><span class="p">(</span><span class="s2">&quot;gym_ProMP/Reacher-v2&quot;</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">34</span>
<span class="linenos">35</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">&#39;__main__&#39;</span><span class="p">:</span>
<span class="linenos">36</span> <span class="n">example_mp</span><span class="p">(</span><span class="s2">&quot;gym_ProMP/Reacher-v2&quot;</span><span class="p">)</span>
<span class="linenos">36</span> <span class="n">main</span><span class="p">()</span>
</pre></div>
</div>
</section>

View File

@ -4,7 +4,7 @@
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>PD Control Gain Tuning Example &mdash; Fancy Gym 0.2 documentation</title>
<title>PD Control Gain Tuning Example &mdash; Fancy Gym 0.3.0 documentation</title>
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/style.css" type="text/css" />
@ -41,7 +41,7 @@
<img src="../_static/icon.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
0.2
0.3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">

View File

@ -4,7 +4,7 @@
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Replanning Example &mdash; Fancy Gym 0.2 documentation</title>
<title>Replanning Example &mdash; Fancy Gym 0.3.0 documentation</title>
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/style.css" type="text/css" />
@ -41,7 +41,7 @@
<img src="../_static/icon.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
0.2
0.3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
@ -112,24 +112,24 @@
<span class="linenos"> 3</span>
<span class="linenos"> 4</span>
<span class="linenos"> 5</span><span class="k">def</span> <span class="nf">example_run_replanning_env</span><span class="p">(</span><span class="n">env_name</span><span class="o">=</span><span class="s2">&quot;fancy_ProDMP/BoxPushingDenseReplan-v0&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="linenos"> 6</span> <span class="n">env</span> <span class="o">=</span> <span class="n">gym</span><span class="o">.</span><span class="n">make</span><span class="p">(</span><span class="n">env_name</span><span class="p">)</span>
<span class="linenos"> 6</span> <span class="n">env</span> <span class="o">=</span> <span class="n">gym</span><span class="o">.</span><span class="n">make</span><span class="p">(</span><span class="n">env_name</span><span class="p">,</span> <span class="n">render_mode</span><span class="o">=</span><span class="s1">&#39;human&#39;</span> <span class="k">if</span> <span class="n">render</span> <span class="k">else</span> <span class="kc">None</span><span class="p">)</span>
<span class="linenos"> 7</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">(</span><span class="n">seed</span><span class="o">=</span><span class="n">seed</span><span class="p">)</span>
<span class="linenos"> 8</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">iterations</span><span class="p">):</span>
<span class="linenos"> 9</span> <span class="n">done</span> <span class="o">=</span> <span class="kc">False</span>
<span class="linenos">10</span> <span class="k">while</span> <span class="n">done</span> <span class="ow">is</span> <span class="kc">False</span><span class="p">:</span>
<span class="linenos">11</span> <span class="n">ac</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">action_space</span><span class="o">.</span><span class="n">sample</span><span class="p">()</span>
<span class="linenos">12</span> <span class="n">obs</span><span class="p">,</span> <span class="n">reward</span><span class="p">,</span> <span class="n">terminated</span><span class="p">,</span> <span class="n">truncated</span><span class="p">,</span> <span class="n">info</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">step</span><span class="p">(</span><span class="n">ac</span><span class="p">)</span>
<span class="linenos">13</span> <span class="k">if</span> <span class="n">render</span><span class="p">:</span>
<span class="linenos">14</span> <span class="n">env</span><span class="o">.</span><span class="n">render</span><span class="p">(</span><span class="n">mode</span><span class="o">=</span><span class="s2">&quot;human&quot;</span><span class="p">)</span>
<span class="linenos">15</span> <span class="k">if</span> <span class="n">terminated</span> <span class="ow">or</span> <span class="n">truncated</span><span class="p">:</span>
<span class="linenos">16</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos"> 9</span> <span class="k">while</span> <span class="kc">True</span><span class="p">:</span>
<span class="linenos">10</span> <span class="n">ac</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">action_space</span><span class="o">.</span><span class="n">sample</span><span class="p">()</span>
<span class="linenos">11</span> <span class="n">obs</span><span class="p">,</span> <span class="n">reward</span><span class="p">,</span> <span class="n">terminated</span><span class="p">,</span> <span class="n">truncated</span><span class="p">,</span> <span class="n">info</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">step</span><span class="p">(</span><span class="n">ac</span><span class="p">)</span>
<span class="linenos">12</span> <span class="k">if</span> <span class="n">render</span><span class="p">:</span>
<span class="linenos">13</span> <span class="n">env</span><span class="o">.</span><span class="n">render</span><span class="p">()</span>
<span class="linenos">14</span> <span class="k">if</span> <span class="n">terminated</span> <span class="ow">or</span> <span class="n">truncated</span><span class="p">:</span>
<span class="linenos">15</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos">16</span> <span class="k">break</span>
<span class="linenos">17</span> <span class="n">env</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
<span class="linenos">18</span> <span class="k">del</span> <span class="n">env</span>
<span class="linenos">19</span>
<span class="linenos">20</span>
<span class="linenos">21</span><span class="k">def</span> <span class="nf">example_custom_replanning_envs</span><span class="p">(</span><span class="n">seed</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">iteration</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
<span class="linenos">22</span> <span class="c1"># id for a step-based environment</span>
<span class="linenos">23</span> <span class="n">base_env_id</span> <span class="o">=</span> <span class="s2">&quot;BoxPushingDense-v0&quot;</span>
<span class="linenos">23</span> <span class="n">base_env_id</span> <span class="o">=</span> <span class="s2">&quot;fancy/BoxPushingDense-v0&quot;</span>
<span class="linenos">24</span>
<span class="linenos">25</span> <span class="n">wrappers</span> <span class="o">=</span> <span class="p">[</span><span class="n">fancy_gym</span><span class="o">.</span><span class="n">envs</span><span class="o">.</span><span class="n">mujoco</span><span class="o">.</span><span class="n">box_pushing</span><span class="o">.</span><span class="n">mp_wrapper</span><span class="o">.</span><span class="n">MPWrapper</span><span class="p">]</span>
<span class="linenos">26</span>
@ -147,31 +147,34 @@
<span class="linenos">38</span> <span class="s1">&#39;replanning_schedule&#39;</span><span class="p">:</span> <span class="k">lambda</span> <span class="n">pos</span><span class="p">,</span> <span class="n">vel</span><span class="p">,</span> <span class="n">obs</span><span class="p">,</span> <span class="n">action</span><span class="p">,</span> <span class="n">t</span><span class="p">:</span> <span class="n">t</span> <span class="o">%</span> <span class="mi">25</span> <span class="o">==</span> <span class="mi">0</span><span class="p">,</span>
<span class="linenos">39</span> <span class="s1">&#39;condition_on_desired&#39;</span><span class="p">:</span> <span class="kc">True</span><span class="p">}</span>
<span class="linenos">40</span>
<span class="linenos">41</span> <span class="n">env</span> <span class="o">=</span> <span class="n">fancy_gym</span><span class="o">.</span><span class="n">make_bb</span><span class="p">(</span><span class="n">env_id</span><span class="o">=</span><span class="n">base_env_id</span><span class="p">,</span> <span class="n">wrappers</span><span class="o">=</span><span class="n">wrappers</span><span class="p">,</span> <span class="n">black_box_kwargs</span><span class="o">=</span><span class="n">black_box_kwargs</span><span class="p">,</span>
<span class="linenos">42</span> <span class="n">traj_gen_kwargs</span><span class="o">=</span><span class="n">trajectory_generator_kwargs</span><span class="p">,</span> <span class="n">controller_kwargs</span><span class="o">=</span><span class="n">controller_kwargs</span><span class="p">,</span>
<span class="linenos">43</span> <span class="n">phase_kwargs</span><span class="o">=</span><span class="n">phase_generator_kwargs</span><span class="p">,</span> <span class="n">basis_kwargs</span><span class="o">=</span><span class="n">basis_generator_kwargs</span><span class="p">,</span>
<span class="linenos">44</span> <span class="n">seed</span><span class="o">=</span><span class="n">seed</span><span class="p">)</span>
<span class="linenos">45</span> <span class="k">if</span> <span class="n">render</span><span class="p">:</span>
<span class="linenos">46</span> <span class="n">env</span><span class="o">.</span><span class="n">render</span><span class="p">(</span><span class="n">mode</span><span class="o">=</span><span class="s2">&quot;human&quot;</span><span class="p">)</span>
<span class="linenos">47</span>
<span class="linenos">48</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos">49</span>
<span class="linenos">50</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">iteration</span><span class="p">):</span>
<span class="linenos">51</span> <span class="n">ac</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">action_space</span><span class="o">.</span><span class="n">sample</span><span class="p">()</span>
<span class="linenos">52</span> <span class="n">obs</span><span class="p">,</span> <span class="n">reward</span><span class="p">,</span> <span class="n">terminated</span><span class="p">,</span> <span class="n">truncated</span><span class="p">,</span> <span class="n">info</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">step</span><span class="p">(</span><span class="n">ac</span><span class="p">)</span>
<span class="linenos">53</span> <span class="k">if</span> <span class="n">terminated</span> <span class="ow">or</span> <span class="n">truncated</span><span class="p">:</span>
<span class="linenos">54</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos">55</span>
<span class="linenos">56</span> <span class="n">env</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
<span class="linenos">57</span> <span class="k">del</span> <span class="n">env</span>
<span class="linenos">58</span>
<span class="linenos">41</span> <span class="n">base_env</span> <span class="o">=</span> <span class="n">gym</span><span class="o">.</span><span class="n">make</span><span class="p">(</span><span class="n">base_env_id</span><span class="p">,</span> <span class="n">render_mode</span><span class="o">=</span><span class="s1">&#39;human&#39;</span> <span class="k">if</span> <span class="n">render</span> <span class="k">else</span> <span class="kc">None</span><span class="p">)</span>
<span class="linenos">42</span> <span class="n">env</span> <span class="o">=</span> <span class="n">fancy_gym</span><span class="o">.</span><span class="n">make_bb</span><span class="p">(</span><span class="n">env</span><span class="o">=</span><span class="n">base_env</span><span class="p">,</span> <span class="n">wrappers</span><span class="o">=</span><span class="n">wrappers</span><span class="p">,</span> <span class="n">black_box_kwargs</span><span class="o">=</span><span class="n">black_box_kwargs</span><span class="p">,</span>
<span class="linenos">43</span> <span class="n">traj_gen_kwargs</span><span class="o">=</span><span class="n">trajectory_generator_kwargs</span><span class="p">,</span> <span class="n">controller_kwargs</span><span class="o">=</span><span class="n">controller_kwargs</span><span class="p">,</span>
<span class="linenos">44</span> <span class="n">phase_kwargs</span><span class="o">=</span><span class="n">phase_generator_kwargs</span><span class="p">,</span> <span class="n">basis_kwargs</span><span class="o">=</span><span class="n">basis_generator_kwargs</span><span class="p">,</span>
<span class="linenos">45</span> <span class="n">seed</span><span class="o">=</span><span class="n">seed</span><span class="p">)</span>
<span class="linenos">46</span> <span class="k">if</span> <span class="n">render</span><span class="p">:</span>
<span class="linenos">47</span> <span class="n">env</span><span class="o">.</span><span class="n">render</span><span class="p">()</span>
<span class="linenos">48</span>
<span class="linenos">49</span> <span class="n">obs</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos">50</span>
<span class="linenos">51</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">iteration</span><span class="p">):</span>
<span class="linenos">52</span> <span class="n">ac</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">action_space</span><span class="o">.</span><span class="n">sample</span><span class="p">()</span>
<span class="linenos">53</span> <span class="n">obs</span><span class="p">,</span> <span class="n">reward</span><span class="p">,</span> <span class="n">terminated</span><span class="p">,</span> <span class="n">truncated</span><span class="p">,</span> <span class="n">info</span> <span class="o">=</span> <span class="n">env</span><span class="o">.</span><span class="n">step</span><span class="p">(</span><span class="n">ac</span><span class="p">)</span>
<span class="linenos">54</span> <span class="k">if</span> <span class="n">terminated</span> <span class="ow">or</span> <span class="n">truncated</span><span class="p">:</span>
<span class="linenos">55</span> <span class="n">env</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="linenos">56</span>
<span class="linenos">57</span> <span class="n">env</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
<span class="linenos">58</span> <span class="k">del</span> <span class="n">env</span>
<span class="linenos">59</span>
<span class="linenos">60</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span class="p">:</span>
<span class="linenos">60</span><span class="k">def</span> <span class="nf">main</span><span class="p">(</span><span class="n">render</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="linenos">61</span> <span class="c1"># run a registered replanning environment</span>
<span class="linenos">62</span> <span class="n">example_run_replanning_env</span><span class="p">(</span><span class="n">env_name</span><span class="o">=</span><span class="s2">&quot;fancy_ProDMP/BoxPushingDenseReplan-v0&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="linenos">62</span> <span class="n">example_run_replanning_env</span><span class="p">(</span><span class="n">env_name</span><span class="o">=</span><span class="s2">&quot;fancy_ProDMP/BoxPushingDenseReplan-v0&quot;</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">63</span>
<span class="linenos">64</span> <span class="c1"># run a custom replanning environment</span>
<span class="linenos">65</span> <span class="n">example_custom_replanning_envs</span><span class="p">(</span><span class="n">seed</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">iteration</span><span class="o">=</span><span class="mi">8</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="linenos">65</span> <span class="n">example_custom_replanning_envs</span><span class="p">(</span><span class="n">seed</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">iteration</span><span class="o">=</span><span class="mi">8</span><span class="p">,</span> <span class="n">render</span><span class="o">=</span><span class="n">render</span><span class="p">)</span>
<span class="linenos">66</span>
<span class="linenos">67</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span class="p">:</span>
<span class="linenos">68</span> <span class="n">main</span><span class="p">()</span>
</pre></div>
</div>
</section>

View File

@ -4,7 +4,7 @@
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>fancy_gym.envs &mdash; Fancy Gym 0.2 documentation</title>
<title>fancy_gym.envs &mdash; Fancy Gym 0.3.0 documentation</title>
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/style.css" type="text/css" />
@ -39,7 +39,7 @@
<img src="../_static/icon.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
0.2
0.3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">

View File

@ -4,7 +4,7 @@
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>fancy_gym.register &mdash; Fancy Gym 0.2 documentation</title>
<title>fancy_gym.register &mdash; Fancy Gym 0.3.0 documentation</title>
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/style.css" type="text/css" />
@ -41,7 +41,7 @@
<img src="../_static/icon.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
0.2
0.3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">

View File

@ -4,7 +4,7 @@
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>fancy_gym.upgrade &mdash; Fancy Gym 0.2 documentation</title>
<title>fancy_gym.upgrade &mdash; Fancy Gym 0.3.0 documentation</title>
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/style.css" type="text/css" />
@ -40,7 +40,7 @@
<img src="../_static/icon.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
0.2
0.3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">

View File

@ -3,7 +3,7 @@
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Index &mdash; Fancy Gym 0.2 documentation</title>
<title>Index &mdash; Fancy Gym 0.3.0 documentation</title>
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/style.css" type="text/css" />
@ -38,7 +38,7 @@
<img src="_static/icon.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
0.2
0.3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">

View File

@ -4,7 +4,7 @@
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Basic Usage &mdash; Fancy Gym 0.2 documentation</title>
<title>Basic Usage &mdash; Fancy Gym 0.3.0 documentation</title>
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/style.css" type="text/css" />
@ -41,7 +41,7 @@
<img src="../_static/icon.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
0.2
0.3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">

View File

@ -4,7 +4,7 @@
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>What is Episodic RL? &mdash; Fancy Gym 0.2 documentation</title>
<title>What is Episodic RL? &mdash; Fancy Gym 0.3.0 documentation</title>
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/style.css" type="text/css" />
@ -41,7 +41,7 @@
<img src="../_static/icon.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
0.2
0.3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">

View File

@ -4,7 +4,7 @@
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Installation &mdash; Fancy Gym 0.2 documentation</title>
<title>Installation &mdash; Fancy Gym 0.3.0 documentation</title>
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/style.css" type="text/css" />
@ -41,7 +41,7 @@
<img src="../_static/icon.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
0.2
0.3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
@ -135,7 +135,7 @@ pip<span class="w"> </span>install<span class="w"> </span><span class="s1">&#39;
</div>
<p>Pip can not automatically install up-to-date versions of metaworld,
since they are not avaible on PyPI yet. Install metaworld via</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>pip<span class="w"> </span>install<span class="w"> </span>metaworld@git+https://github.com/Farama-Foundation/Metaworld.git@d155d0051630bb365ea6a824e02c66c068947439#egg<span class="o">=</span>metaworld
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>pip<span class="w"> </span>install<span class="w"> </span>metaworld@git+https://github.com/Farama-Foundation/Metaworld.git@c822f28f582ba1ad49eb5dcf61016566f28003ba#egg<span class="o">=</span>metaworld
</pre></div>
</div>
</section>
@ -169,7 +169,7 @@ pip<span class="w"> </span>install<span class="w"> </span>-e<span class="w"> </s
</pre></div>
</div>
<p>Metaworld has to be installed manually with</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>pip<span class="w"> </span>install<span class="w"> </span>metaworld@git+https://github.com/Farama-Foundation/Metaworld.git@d155d0051630bb365ea6a824e02c66c068947439#egg<span class="o">=</span>metaworld
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>pip<span class="w"> </span>install<span class="w"> </span>metaworld@git+https://github.com/Farama-Foundation/Metaworld.git@c822f28f582ba1ad49eb5dcf61016566f28003ba#egg<span class="o">=</span>metaworld
</pre></div>
</div>
</section>

View File

@ -4,7 +4,7 @@
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Creating new MP Environments &mdash; Fancy Gym 0.2 documentation</title>
<title>Creating new MP Environments &mdash; Fancy Gym 0.3.0 documentation</title>
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/style.css" type="text/css" />
@ -41,7 +41,7 @@
<img src="../_static/icon.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
0.2
0.3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">

View File

@ -4,7 +4,7 @@
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Fancy Gym &mdash; Fancy Gym 0.2 documentation</title>
<title>Fancy Gym &mdash; Fancy Gym 0.3.0 documentation</title>
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/style.css" type="text/css" />
@ -40,7 +40,7 @@
<img src="_static/icon.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
0.2
0.3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">

Binary file not shown.

View File

@ -3,7 +3,7 @@
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Python Module Index &mdash; Fancy Gym 0.2 documentation</title>
<title>Python Module Index &mdash; Fancy Gym 0.3.0 documentation</title>
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/style.css" type="text/css" />
@ -41,7 +41,7 @@
<img src="_static/icon.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
0.2
0.3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">

View File

@ -3,7 +3,7 @@
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Search &mdash; Fancy Gym 0.2 documentation</title>
<title>Search &mdash; Fancy Gym 0.3.0 documentation</title>
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/style.css" type="text/css" />
@ -41,7 +41,7 @@
<img src="_static/icon.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
0.2
0.3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="#" method="get">

File diff suppressed because one or more lines are too long

View File

@ -1,13 +1,17 @@
# This conf.py is in large parts inspired by the oen used by stable-baselines 3
import toml
import datetime
project = 'Fancy Gym'
author = 'Fabian Otto, Onur Celik, Dominik Roth, Hongyi Zhou'
copyright = f'2020-{datetime.date.today().year}, {author}'
release = '0.2' # The full version, including alpha/beta/rc tags
version = '0.2' # The short X.Y version
pyproject_content = toml.load("../../pyproject.toml")
proj_version = pyproject_content["project"]["version"]
release = proj_version # The full version, including alpha/beta/rc tags
version = proj_version # The short X.Y version
extensions = [
'myst_parser',
@ -50,4 +54,4 @@ html_context = {
}
def setup(app):
app.add_css_file("style.css")
app.add_css_file("style.css")

View File

@ -18,6 +18,12 @@ A composite reward function serves as the performance metric for the RL system.
Variations of this environment are available, differing in reward structures and the optionality of randomizing the box's initial position. These variations are purposefully designed to challenge RL algorithms, enhancing their generalization and adaptation capabilities. Temporally sparse environments only provide a reward at the last timestep. Spatially sparse environments only provide a reward, if the goal is almost reached, the box is close enought to the goal and somewhat correctly aligned.
These environments all provide smoothness metrics as part of the return infos:
- mean_squared_jerk: Averages the square of jerk (rate of acceleration change) across the motion. Lower values indicate smoother movement.
- maximum_jerk: Identifies the highest jerk value encountered.
- dimensionless_jerk: Normalizes the summed squared jerk over the motion's duration and peak velocity, offering a scale-independent metric of smoothness
| Name | Description | Horizon | Action Dimension | Observation Dimension |
| ------------------------------------------ | -------------------------------------------------------------------- | ------- | ---------------- | --------------------- |
| `fancy/BoxPushingDense-v0` | Custom Box-pushing task with dense rewards | 100 | 3 | 13 |
@ -49,6 +55,9 @@ Variations of the table tennis environment are available to cater to different r
| `fancy/TableTennisWind-v0` | Table Tennis task with wind effects, based on a custom environment for table tennis | 350 | 7 | 19 |
| `fancy/TableTennisGoalSwitching-v0` | Table Tennis task with goal switching, based on a custom environment for table tennis | 350 | 7 | 19 |
| `fancy/TableTennisWindReplan-v0` | Table Tennis task with wind effects and replanning, based on a custom environment for table tennis | 350 | 7 | 19 |
| `fancy/TableTennisRndRobot-v0` | Table Tennis task with random initial robot joint positions \* | 350 | 7 | 19 |
\* Random initialization of robot joint position and speed can be enabled by providing `random_pos_scale` / `random_vel_scale` to make. `TableTennisRndRobot` is equivalent to `TableTennis4D` except, that `random_pos_scale` is set to 0.1 instead of 0 per default.
---
@ -89,8 +98,9 @@ A successful throw in this task is determined by the ball landing in the cup at
| `fancy/Reacher5dSparse-v0` | Sparse Reacher task with 5 links, based on Gymnasium's `gym.envs.mujoco.ReacherEnv` | 200 | 5 | 20 |
| `fancy/Reacher7d-v0` | Reacher task with 7 links, based on Gymnasium's `gym.envs.mujoco.ReacherEnv` | 200 | 7 | 22 |
| `fancy/Reacher7dSparse-v0` | Sparse Reacher task with 7 links, based on Gymnasium's `gym.envs.mujoco.ReacherEnv` | 200 | 7 | 22 |
| `fancy/HopperJumpSparse-v0` | Hopper Jump task with sparse rewards, based on Gymnasium's `gym.envs.mujoco.Hopper` | 250 | 3 | 15 / 16\* |
| `fancy/HopperJump-v0` | Hopper Jump task with continuous rewards, based on Gymnasium's `gym.envs.mujoco.Hopper` | 250 | 3 | 15 / 16\* |
| `fancy/HopperJumpMarkov-v0` | `fancy/HopperJump-v0`, but with an alternative reward that is markovian. | 250 | 3 | 15 / 16\* |
| `fancy/HopperJumpSparse-v0` | Hopper Jump task with sparse rewards, based on Gymnasium's `gym.envs.mujoco.Hopper` | 250 | 3 | 15 / 16\* |
| `fancy/AntJump-v0` | Ant Jump task, based on Gymnasium's `gym.envs.mujoco.Ant` | 200 | 8 | 119 |
| `fancy/HalfCheetahJump-v0` | HalfCheetah Jump task, based on Gymnasium's `gym.envs.mujoco.HalfCheetah` | 100 | 6 | 112 |
| `fancy/HopperJumpOnBox-v0` | Hopper Jump on Box task, based on Gymnasium's `gym.envs.mujoco.Hopper` | 250 | 4 | 16 / 100\* |

View File

@ -32,7 +32,7 @@ since they are not avaible on PyPI yet. Install metaworld via
.. code:: bash
pip install metaworld@git+https://github.com/Farama-Foundation/Metaworld.git@d155d0051630bb365ea6a824e02c66c068947439#egg=metaworld
pip install metaworld@git+https://github.com/Farama-Foundation/Metaworld.git@c822f28f582ba1ad49eb5dcf61016566f28003ba#egg=metaworld
Installation from master
~~~~~~~~~~~~~~~~~~~~~~~~
@ -70,4 +70,4 @@ Metaworld has to be installed manually with
.. code:: bash
pip install metaworld@git+https://github.com/Farama-Foundation/Metaworld.git@d155d0051630bb365ea6a824e02c66c068947439#egg=metaworld
pip install metaworld@git+https://github.com/Farama-Foundation/Metaworld.git@c822f28f582ba1ad49eb5dcf61016566f28003ba#egg=metaworld

View File

@ -25,10 +25,11 @@ from .mujoco.hopper_throw.hopper_throw_in_basket import MAX_EPISODE_STEPS_HOPPER
from .mujoco.walker_2d_jump.walker_2d_jump import MAX_EPISODE_STEPS_WALKERJUMP
from .mujoco.box_pushing.box_pushing_env import BoxPushingDense, BoxPushingTemporalSparse, \
BoxPushingTemporalSpatialSparse, MAX_EPISODE_STEPS_BOX_PUSHING
from .mujoco.table_tennis.table_tennis_env import TableTennisEnv, TableTennisWind, TableTennisGoalSwitching, \
MAX_EPISODE_STEPS_TABLE_TENNIS
from .mujoco.table_tennis.table_tennis_env import TableTennisEnv, TableTennisWind, TableTennisGoalSwitching, TableTennisMarkov, \
MAX_EPISODE_STEPS_TABLE_TENNIS, MAX_EPISODE_STEPS_TABLE_TENNIS_MARKOV_VER
from .mujoco.table_tennis.mp_wrapper import TT_MPWrapper as MPWrapper_TableTennis
from .mujoco.table_tennis.mp_wrapper import TT_MPWrapper_Replan as MPWrapper_TableTennis_Replan
from .mujoco.table_tennis.mp_wrapper import TTRndRobot_MPWrapper as MPWrapper_TableTennis_Rnd
from .mujoco.table_tennis.mp_wrapper import TTVelObs_MPWrapper as MPWrapper_TableTennis_VelObs
from .mujoco.table_tennis.mp_wrapper import TTVelObs_MPWrapper_Replan as MPWrapper_TableTennis_VelObs_Replan
@ -135,6 +136,19 @@ register(
}
)
register(
id='fancy/HopperJumpMarkov-v0',
entry_point='fancy_gym.envs.mujoco:HopperJumpMarkovRew',
mp_wrapper=mujoco.hopper_jump.MPWrapper,
max_episode_steps=MAX_EPISODE_STEPS_HOPPERJUMP,
kwargs={
"sparse": False,
"healthy_reward": 1.0,
"contact_weight": 0.0,
"height_weight": 3.0,
}
)
# TODO: Add [MPs] later when finished (old TODO I moved here during refactor)
register(
id='fancy/AntJump-v0',
@ -290,6 +304,37 @@ register(
}
)
register(
id='fancy/TableTennisRndRobot-v0',
entry_point='fancy_gym.envs.mujoco:TableTennisRandomInit',
mp_wrapper=MPWrapper_TableTennis_Rnd,
max_episode_steps=MAX_EPISODE_STEPS_TABLE_TENNIS,
kwargs={
'random_pos_scale': 0.1,
'random_vel_scale': 0.0,
}
)
register(
id='fancy/TableTennisMarkov-v0',
mp_wrapper=MPWrapper_TableTennis,
entry_point='fancy_gym.envs.mujoco:TableTennisMarkov',
max_episode_steps=MAX_EPISODE_STEPS_TABLE_TENNIS_MARKOV_VER,
kwargs={
}
)
register(
id='fancy/TableTennisRndRobotMarkov-v0',
mp_wrapper=MPWrapper_TableTennis_Rnd,
entry_point='fancy_gym.envs.mujoco:TableTennisMarkov',
max_episode_steps=MAX_EPISODE_STEPS_TABLE_TENNIS_MARKOV_VER,
kwargs={
'random_pos_scale': 0.1,
'random_vel_scale': 0.0,
}
)
# Air Hockey environments
for env_mode in ["7dof-hit", "7dof-defend", "3dof-hit", "3dof-defend", "7dof-hit-airhockit2023", "7dof-defend-airhockit2023"]:
register(

View File

@ -1,14 +1,14 @@
from .ant_jump.ant_jump import AntJumpEnv
from .beerpong.beerpong import BeerPongEnv, BeerPongEnvStepBasedEpisodicReward
from .half_cheetah_jump.half_cheetah_jump import HalfCheetahJumpEnv
from .hopper_jump.hopper_jump import HopperJumpEnv
from .hopper_jump.hopper_jump import HopperJumpEnv, HopperJumpMarkovRew
from .hopper_jump.hopper_jump_on_box import HopperJumpOnBoxEnv
from .hopper_throw.hopper_throw import HopperThrowEnv
from .hopper_throw.hopper_throw_in_basket import HopperThrowInBasketEnv
from .reacher.reacher import ReacherEnv
from .walker_2d_jump.walker_2d_jump import Walker2dJumpEnv
from .box_pushing.box_pushing_env import BoxPushingDense, BoxPushingTemporalSparse, BoxPushingTemporalSpatialSparse
from .table_tennis.table_tennis_env import TableTennisEnv, TableTennisWind, TableTennisGoalSwitching
from .table_tennis.table_tennis_env import TableTennisEnv, TableTennisWind, TableTennisGoalSwitching, TableTennisMarkov, TableTennisRandomInit
try:
from .air_hockey.air_hockey_env_wrapper import AirHockeyEnv

View File

@ -115,6 +115,7 @@ class AntJumpEnv(AntEnvCustomXML):
contact_force_range=contact_force_range,
reset_noise_scale=reset_noise_scale,
exclude_current_positions_from_observation=exclude_current_positions_from_observation, **kwargs)
self.render_active = False
def step(self, action):
self.current_step += 1
@ -153,8 +154,15 @@ class AntJumpEnv(AntEnvCustomXML):
}
truncated = False
if self.render_active and self.render_mode=='human':
self.render()
return obs, reward, terminated, truncated, info
def render(self):
self.render_active = True
return super().render()
def _get_obs(self):
return np.append(super()._get_obs(), self.goal)

View File

@ -44,6 +44,7 @@ class BeerPongEnv(MujocoEnv, utils.EzPickle):
}
def __init__(self, **kwargs):
utils.EzPickle.__init__(self)
self._steps = 0
# Small Context -> Easier. Todo: Should we do different versions?
# self.xml_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "beerpong_wo_cup.xml")
@ -89,7 +90,7 @@ class BeerPongEnv(MujocoEnv, utils.EzPickle):
observation_space=self.observation_space,
**kwargs
)
utils.EzPickle.__init__(self)
self.render_active = False
@property
def start_pos(self):
@ -169,8 +170,15 @@ class BeerPongEnv(MujocoEnv, utils.EzPickle):
truncated = False
if self.render_active and self.render_mode=='human':
self.render()
return ob, reward, terminated, truncated, infos
def render(self):
self.render_active = True
return super().render()
def _get_obs(self):
theta = self.data.qpos.flat[:7].copy()
theta_dot = self.data.qvel.flat[:7].copy()

View File

@ -4,8 +4,10 @@ import numpy as np
from gymnasium import utils, spaces
from gymnasium.envs.mujoco import MujocoEnv
from fancy_gym.envs.mujoco.box_pushing.box_pushing_utils import rot_to_quat, get_quaternion_error, rotation_distance
from fancy_gym.envs.mujoco.box_pushing.box_pushing_utils import rot_to_quat, get_quaternion_error, rotation_distance
from fancy_gym.envs.mujoco.box_pushing.box_pushing_utils import q_max, q_min, q_dot_max, q_torque_max
from fancy_gym.envs.mujoco.box_pushing.box_pushing_utils import desired_rod_quat
from fancy_gym.envs.mujoco.box_pushing.box_pushing_utils import calculate_jerk_profile, calculate_mean_squared_jerk, calculate_dimensionless_jerk, calculate_maximum_jerk
import mujoco
@ -49,6 +51,7 @@ class BoxPushingEnvBase(MujocoEnv, utils.EzPickle):
self._desired_rod_quat = desired_rod_quat
self._episode_energy = 0.
self.velocity_profile = []
self.observation_space = spaces.Box(
low=-np.inf, high=np.inf, shape=(28,), dtype=np.float64
@ -60,6 +63,7 @@ class BoxPushingEnvBase(MujocoEnv, utils.EzPickle):
frame_skip=self.frame_skip,
observation_space=self.observation_space, **kwargs)
self.action_space = spaces.Box(low=-1, high=1, shape=(7,))
self.render_active = False
def step(self, action):
action = 10 * np.clip(action, self.action_space.low, self.action_space.high)
@ -67,6 +71,8 @@ class BoxPushingEnvBase(MujocoEnv, utils.EzPickle):
unstable_simulation = False
self.velocity_profile.append(self.data.qvel[:7].copy())
try:
self.do_simulation(resultant_action, self.frame_skip)
except Exception as e:
@ -96,11 +102,15 @@ class BoxPushingEnvBase(MujocoEnv, utils.EzPickle):
obs = self._get_obs()
box_goal_pos_dist = 0. if not episode_end else np.linalg.norm(box_pos - target_pos)
box_goal_quat_dist = 0. if not episode_end else rotation_distance(box_quat, target_quat)
mean_squared_jerk, maximum_jerk, dimensionless_jerk = (0.0,0.0,0.0) if not episode_end else self.calculate_smoothness_metrics(np.array(self.velocity_profile), self.dt)
infos = {
'episode_end': episode_end,
'box_goal_pos_dist': box_goal_pos_dist,
'box_goal_rot_dist': box_goal_quat_dist,
'episode_energy': 0. if not episode_end else self._episode_energy,
'mean_squared_jerk': mean_squared_jerk,
'maximum_jerk': maximum_jerk,
'dimensionless_jerk': dimensionless_jerk,
'is_success': True if episode_end and box_goal_pos_dist < 0.05 and box_goal_quat_dist < 0.5 else False,
'num_steps': self._steps
}
@ -108,8 +118,35 @@ class BoxPushingEnvBase(MujocoEnv, utils.EzPickle):
terminated = episode_end and infos['is_success']
truncated = episode_end and not infos['is_success']
if self.render_active and self.render_mode=='human':
self.render()
return obs, reward, terminated, truncated, infos
def render(self):
self.render_active = True
return super().render()
def calculate_smoothness_metrics(self, velocity_profile, dt):
"""
Calculates the smoothness metrics for the given velocity profile.
param velocity_profile: np.array
The array containing the movement velocity profile.
param dt: float
The sampling time interval of the data.
return mean_squared_jerk: float
The mean squared jerk estimate of the given movement's smoothness.
return maximum_jerk: float
The maximum jerk estimate of the given movement's smoothness.
return dimensionless_jerk: float
The dimensionless jerk estimate of the given movement's smoothness.
"""
jerk_profile = calculate_jerk_profile(velocity_profile, dt)
mean_squared_jerk = calculate_mean_squared_jerk(jerk_profile)
maximum_jerk = calculate_maximum_jerk(jerk_profile)
dimensionless_jerk = calculate_dimensionless_jerk(jerk_profile, velocity_profile, dt)
return mean_squared_jerk, maximum_jerk, dimensionless_jerk
def reset_model(self):
# rest box to initial position
self.set_state(self.init_qpos_box_pushing, self.init_qvel_box_pushing)

View File

@ -51,3 +51,19 @@ def rot_to_quat(theta, axis):
quant[0] = np.sin(theta / 2.)
quant[1:] = np.cos(theta / 2.) * axis
return quant
def calculate_jerk_profile(velocity_profile, dt):
jerk = np.diff(velocity_profile, 2, 0) / pow(dt, 2)
return jerk
def calculate_mean_squared_jerk(jerk_profile):
return np.mean(pow(jerk_profile, 2))
def calculate_maximum_jerk(jerk_profile):
return np.max(abs(jerk_profile))
def calculate_dimensionless_jerk(jerk_profile, velocity_profile, dt):
sum_squared_jerk = np.sum(pow(jerk_profile, 2), 0)
duration = len(velocity_profile) * dt
peak_velocity = np.max(abs(velocity_profile), 0)
return np.mean(sum_squared_jerk * pow(duration, 3) / pow(peak_velocity, 2))

View File

@ -60,7 +60,11 @@ class HalfCheetahEnvCustomXML(HalfCheetahEnv):
default_camera_config=DEFAULT_CAMERA_CONFIG,
**kwargs,
)
self.render_active = False
def render(self):
self.render_active = True
return super().render()
class HalfCheetahJumpEnv(HalfCheetahEnvCustomXML):
"""
@ -120,6 +124,9 @@ class HalfCheetahJumpEnv(HalfCheetahEnvCustomXML):
'max_height': self.max_height
}
if self.render_active and self.render_mode=='human':
self.render()
return observation, reward, terminated, truncated, info
def _get_obs(self):

View File

@ -88,6 +88,12 @@ class HopperEnvCustomXML(HopperEnv):
**kwargs,
)
self.render_active = False
def render(self):
self.render_active = True
return super().render()
class HopperJumpEnv(HopperEnvCustomXML):
"""
@ -201,6 +207,10 @@ class HopperJumpEnv(HopperEnvCustomXML):
healthy=self.is_healthy,
contact_dist=self.contact_dist or 0
)
if self.render_active and self.render_mode=='human':
self.render()
return observation, reward, terminated, truncated, info
def _get_obs(self):
@ -262,76 +272,100 @@ class HopperJumpEnv(HopperEnvCustomXML):
return True
return False
# # TODO is that needed? if so test it
# class HopperJumpStepEnv(HopperJumpEnv):
#
# def __init__(self,
# xml_file='hopper_jump.xml',
# forward_reward_weight=1.0,
# ctrl_cost_weight=1e-3,
# healthy_reward=1.0,
# height_weight=3,
# dist_weight=3,
# terminate_when_unhealthy=False,
# healthy_state_range=(-100.0, 100.0),
# healthy_z_range=(0.5, float('inf')),
# healthy_angle_range=(-float('inf'), float('inf')),
# reset_noise_scale=5e-3,
# exclude_current_positions_from_observation=False
# ):
#
# self._height_weight = height_weight
# self._dist_weight = dist_weight
# super().__init__(xml_file, forward_reward_weight, ctrl_cost_weight, healthy_reward, terminate_when_unhealthy,
# healthy_state_range, healthy_z_range, healthy_angle_range, reset_noise_scale,
# exclude_current_positions_from_observation)
#
# def step(self, action):
# self._steps += 1
#
# self.do_simulation(action, self.frame_skip)
#
# height_after = self.get_body_com("torso")[2]
# site_pos_after = self.data.site('foot_site').xpos.copy()
# self.max_height = max(height_after, self.max_height)
#
# ctrl_cost = self.control_cost(action)
# healthy_reward = self.healthy_reward
# height_reward = self._height_weight * height_after
# goal_dist = np.linalg.norm(site_pos_after - np.array([self.goal, 0, 0]))
# goal_dist_reward = -self._dist_weight * goal_dist
# dist_reward = self._forward_reward_weight * (goal_dist_reward + height_reward)
#
# rewards = dist_reward + healthy_reward
# costs = ctrl_cost
# done = False
#
# # This is only for logging the distance to goal when first having the contact
# has_floor_contact = self._is_floor_foot_contact() if not self.contact_with_floor else False
#
# if not self.init_floor_contact:
# self.init_floor_contact = has_floor_contact
# if self.init_floor_contact and not self.has_left_floor:
# self.has_left_floor = not has_floor_contact
# if not self.contact_with_floor and self.has_left_floor:
# self.contact_with_floor = has_floor_contact
#
# if self.contact_dist is None and self.contact_with_floor:
# self.contact_dist = goal_dist
#
# ##############################################################
#
# observation = self._get_obs()
# reward = rewards - costs
# info = {
# 'height': height_after,
# 'x_pos': site_pos_after,
# 'max_height': copy.copy(self.max_height),
# 'goal': copy.copy(self.goal),
# 'goal_dist': goal_dist,
# 'height_rew': height_reward,
# 'healthy_reward': healthy_reward,
# 'healthy': copy.copy(self.is_healthy),
# 'contact_dist': copy.copy(self.contact_dist) or 0
# }
# return observation, reward, done, info
class HopperJumpMarkovRew(HopperJumpEnv):
def step(self, action):
self._steps += 1
self.do_simulation(action, self.frame_skip)
height_after = self.get_body_com("torso")[2]
# site_pos_after = self.data.get_site_xpos('foot_site')
site_pos_after = self.data.site('foot_site').xpos
self.max_height = max(height_after, self.max_height)
has_floor_contact = self._is_floor_foot_contact() if not self.contact_with_floor else False
if not self.init_floor_contact:
self.init_floor_contact = has_floor_contact
if self.init_floor_contact and not self.has_left_floor:
self.has_left_floor = not has_floor_contact
if not self.contact_with_floor and self.has_left_floor:
self.contact_with_floor = has_floor_contact
ctrl_cost = self.control_cost(action)
costs = ctrl_cost
terminated = False
truncated = False
goal_dist = np.linalg.norm(site_pos_after - self.goal)
if self.contact_dist is None and self.contact_with_floor:
self.contact_dist = goal_dist
rewards = 0
if not self.sparse or (self.sparse and self._steps >= MAX_EPISODE_STEPS_HOPPERJUMP):
healthy_reward = self.healthy_reward
distance_reward = -goal_dist * self._dist_weight
height_reward = (self.max_height if self.sparse else height_after) * self._height_weight
contact_reward = -(self.contact_dist or 5) * self._contact_weight
rewards = self._forward_reward_weight * (distance_reward + height_reward + contact_reward + healthy_reward)
observation = self._get_obs()
# While loop to simulate the process after jump to make the task Markovian
if self.sparse and self.has_left_floor:
while self._steps < MAX_EPISODE_STEPS_HOPPERJUMP:
# Simulate to the end of the episode
self._steps += 1
try:
self.do_simulation(np.zeros_like(action), self.frame_skip)
except Exception as e:
print(e)
height_after = self.get_body_com("torso")[2]
#site_pos_after = self.data.get_site_xpos('foot_site')
site_pos_after = self.data.site('foot_site').xpos
self.max_height = max(height_after, self.max_height)
has_floor_contact = self._is_floor_foot_contact() if not self.contact_with_floor else False
if not self.init_floor_contact:
self.init_floor_contact = has_floor_contact
if self.init_floor_contact and not self.has_left_floor:
self.has_left_floor = not has_floor_contact
if not self.contact_with_floor and self.has_left_floor:
self.contact_with_floor = has_floor_contact
ctrl_cost = self.control_cost(action)
costs = ctrl_cost
done = False
goal_dist = np.linalg.norm(site_pos_after - self.goal)
if self.contact_dist is None and self.contact_with_floor:
self.contact_dist = goal_dist
rewards = 0
# Task has reached the end, compute the sparse reward
done = True
healthy_reward = self.healthy_reward
distance_reward = -goal_dist * self._dist_weight
height_reward = (self.max_height if self.sparse else height_after) * self._height_weight
contact_reward = -(self.contact_dist or 5) * self._contact_weight
rewards = self._forward_reward_weight * (distance_reward + height_reward + contact_reward + healthy_reward)
reward = rewards - costs
info = dict(
height=height_after,
x_pos=site_pos_after,
max_height=self.max_height,
goal=self.goal[:1],
goal_dist=goal_dist,
height_rew=self.max_height,
healthy_reward=self.healthy_reward,
healthy=self.is_healthy,
contact_dist=self.contact_dist or 0,
num_steps=self._steps,
has_left_floor=self.has_left_floor
)
return observation, reward, terminated, truncated, info

View File

@ -140,6 +140,9 @@ class HopperJumpOnBoxEnv(HopperEnvCustomXML):
truncated = self.current_step >= self.max_episode_steps and not terminated
if self.render_active and self.render_mode=='human':
self.render()
return observation, reward, terminated, truncated, info
def _get_obs(self):

View File

@ -61,6 +61,8 @@ class HopperThrowEnv(HopperEnvCustomXML):
exclude_current_positions_from_observation=exclude_current_positions_from_observation,
**kwargs)
self.render_active = False
def step(self, action):
self.current_step += 1
self.do_simulation(action, self.frame_skip)
@ -94,8 +96,15 @@ class HopperThrowEnv(HopperEnvCustomXML):
}
truncated = False
if self.render_active and self.render_mode=='human':
self.render()
return observation, reward, terminated, truncated, info
def render(self):
self.render_active = True
return super().render()
def _get_obs(self):
return np.append(super()._get_obs(), self.goal)

View File

@ -68,6 +68,7 @@ class HopperThrowInBasketEnv(HopperEnvCustomXML):
reset_noise_scale=reset_noise_scale,
exclude_current_positions_from_observation=exclude_current_positions_from_observation,
**kwargs)
self.render_active = False
def step(self, action):
@ -118,8 +119,15 @@ class HopperThrowInBasketEnv(HopperEnvCustomXML):
}
truncated = False
if self.render_active and self.render_mode=='human':
self.render()
return observation, reward, terminated, truncated, info
def render(self):
self.render_active = True
return super().render()
def _get_obs(self):
return np.append(super()._get_obs(), self.basket_x)

View File

@ -47,6 +47,8 @@ class ReacherEnv(MujocoEnv, utils.EzPickle):
**kwargs
)
self.render_active = False
def step(self, action):
self._steps += 1
@ -77,8 +79,15 @@ class ReacherEnv(MujocoEnv, utils.EzPickle):
goal=self.goal if hasattr(self, "goal") else None
)
if self.render_active and self.render_mode=='human':
self.render()
return ob, reward, terminated, truncated, info
def render(self):
self.render_active = True
return super().render()
def distance_reward(self):
vec = self.get_body_com("fingertip") - self.get_body_com("target")
return -self._reward_weight * np.linalg.norm(vec)

View File

@ -151,3 +151,15 @@ class TTVelObs_MPWrapper_Replan(TT_MPWrapper_Replan):
[True] * 2, # target landing position
# [True] * 1, # time
])
class TTRndRobot_MPWrapper(TT_MPWrapper):
@property
def context_mask(self):
return np.hstack([
[True] * 7, # joints position
[False] * 7, # joints velocity
[True] * 2, # position ball x, y
[False] * 1, # position ball z
[True] * 2, # target landing position
# [True] * 1, # time
])

View File

@ -5,11 +5,12 @@ from gymnasium import utils, spaces
from gymnasium.envs.mujoco import MujocoEnv
from fancy_gym.envs.mujoco.table_tennis.table_tennis_utils import is_init_state_valid, magnus_force
from fancy_gym.envs.mujoco.table_tennis.table_tennis_utils import jnt_pos_low, jnt_pos_high
from fancy_gym.envs.mujoco.table_tennis.table_tennis_utils import jnt_pos_low, jnt_pos_high, jnt_vel_low, jnt_vel_high
import mujoco
MAX_EPISODE_STEPS_TABLE_TENNIS = 350
MAX_EPISODE_STEPS_TABLE_TENNIS_MARKOV_VER = 300
CONTEXT_BOUNDS_2DIMS = np.array([[-1.0, -0.65], [-0.2, 0.65]])
CONTEXT_BOUNDS_4DIMS = np.array([[-1.0, -0.65, -1.0, -0.65],
@ -18,6 +19,9 @@ CONTEXT_BOUNDS_SWICHING = np.array([[-1.0, -0.65, -1.0, 0.],
[-0.2, 0.65, -0.2, 0.65]])
DEFAULT_ROBOT_INIT_POS = np.array([0.0, 0.0, 0.0, 1.5, 0.0, 0.0, 1.5])
DEFAULT_ROBOT_INIT_VEL = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
class TableTennisEnv(MujocoEnv, utils.EzPickle):
"""
7 DoF table tennis environment
@ -34,7 +38,11 @@ class TableTennisEnv(MujocoEnv, utils.EzPickle):
def __init__(self, ctxt_dim: int = 4, frame_skip: int = 4,
goal_switching_step: int = None,
enable_artificial_wind: bool = False, **kwargs):
enable_artificial_wind: bool = False,
random_pos_scale: float = 0.0,
random_vel_scale: float = 0.0,
**kwargs,
):
utils.EzPickle.__init__(**locals())
self._steps = 0
@ -48,6 +56,10 @@ class TableTennisEnv(MujocoEnv, utils.EzPickle):
self._id_set = False
# initial robot state
self._random_pos_scale = random_pos_scale
self._random_vel_scale = random_vel_scale
# reward calculation
self.ball_landing_pos = None
self._goal_pos = np.zeros(2)
@ -71,6 +83,8 @@ class TableTennisEnv(MujocoEnv, utils.EzPickle):
observation_space=self.observation_space,
**kwargs)
self.render_active = False
if ctxt_dim == 2:
self.context_bounds = CONTEXT_BOUNDS_2DIMS
elif ctxt_dim == 4:
@ -156,10 +170,17 @@ class TableTennisEnv(MujocoEnv, utils.EzPickle):
"num_steps": self._steps,
}
terminated, truncated = self._terminated, False
terminated, truncated = self._terminated, self._steps == MAX_EPISODE_STEPS_TABLE_TENNIS
if self.render_active and self.render_mode=='human':
self.render()
return self._get_obs(), reward, terminated, truncated, info
def render(self):
self.render_active = True
return super().render()
def _contact_checker(self, id_1, id_2):
for coni in range(0, self.data.ncon):
con = self.data.contact[coni]
@ -167,6 +188,17 @@ class TableTennisEnv(MujocoEnv, utils.EzPickle):
return True
return False
def get_initial_robot_state(self):
robot_init_pos = DEFAULT_ROBOT_INIT_POS + \
self.np_random.uniform(-1.0, 1.0, size=7) *\
np.array([5.2, 4.0, 5.6, 4.0, 6.1, 3.2, 4.4]) *\
self._random_pos_scale
robot_init_vel = DEFAULT_ROBOT_INIT_VEL + self.np_random.uniform(-1.0, 1.0, size=7) * self._random_vel_scale
return np.clip(robot_init_pos, jnt_pos_low, jnt_pos_high), np.clip(robot_init_vel, jnt_vel_low, jnt_vel_high)
def reset_model(self):
self._steps = 0
self._init_ball_state = self._generate_valid_init_ball(random_pos=True, random_vel=False)
@ -183,8 +215,10 @@ class TableTennisEnv(MujocoEnv, utils.EzPickle):
self.model.body_pos[5] = np.concatenate([self._goal_pos, [0.77]])
self.data.qpos[:7] = np.array([0., 0., 0., 1.5, 0., 0., 1.5])
self.data.qvel[:7] = np.zeros(7)
robot_init_pos, robot_init_vel = self.get_initial_robot_state()
self.data.qpos[:7] = robot_init_pos
self.data.qvel[:7] = robot_init_vel
mujoco.mj_forward(self.model, self.data)
@ -257,7 +291,7 @@ class TableTennisEnv(MujocoEnv, utils.EzPickle):
def get_invalid_traj_step_return(self, action, pos_traj, contextual_obs, tau_bound, delay_bound):
obs = self._get_obs() if contextual_obs else np.concatenate([self._get_obs(), np.array([0])]) # 0 for invalid traj
penalty = self._get_traj_invalid_penalty(action, pos_traj, tau_bound, delay_bound)
return obs, penalty, True, False, {
return obs, penalty, False, True, {
"hit_ball": [False],
"ball_returned_success": [False],
"land_dist_error": [10.],
@ -274,6 +308,179 @@ class TableTennisEnv(MujocoEnv, utils.EzPickle):
return False, pos_traj, vel_traj
return True, pos_traj, vel_traj
class TableTennisMarkov(TableTennisEnv):
def _get_reward2(self, hit_now, land_now):
# Phase 1 not hit ball
if not self._hit_ball:
# Not hit ball
min_r_b_dist = np.min(np.linalg.norm(np.array(self._ball_traj) - np.array(self._racket_traj), axis=1))
return 0.005 * (1 - np.tanh(min_r_b_dist**2))
# Phase 2 hit ball now
elif self._hit_ball and hit_now:
return 2
# Phase 3 hit ball already and not land yet
elif self._hit_ball and self._ball_landing_pos is None:
min_b_des_b_dist = np.min(np.linalg.norm(np.array(self._ball_traj)[:,:2] - self._goal_pos[:2], axis=1))
return 0.02 * (1 - np.tanh(min_b_des_b_dist**2))
# Phase 4 hit ball already and land now
elif self._hit_ball and land_now:
over_net_bonus = int(self._ball_landing_pos[0] < 0)
min_b_des_b_land_dist = np.linalg.norm(self._goal_pos[:2] - self._ball_landing_pos[:2])
return 4 * (1 - np.tanh(min_b_des_b_land_dist ** 2)) + over_net_bonus
# Phase 5 hit ball already and land already
elif self._hit_ball and not land_now and self._ball_landing_pos is not None:
return 0
else:
raise NotImplementedError
def _get_reward(self, terminated):
# if not terminated:
# return 0
min_r_b_dist = np.min(np.linalg.norm(np.array(self._ball_traj) - np.array(self._racket_traj), axis=1))
if not self._hit_ball:
# Not hit ball
return 0.2 * (1 - np.tanh(min_r_b_dist**2))
elif self._ball_landing_pos is None:
# Hit ball but not landing pos
min_b_des_b_dist = np.min(np.linalg.norm(np.array(self._ball_traj)[:,:2] - self._goal_pos[:2], axis=1))
return 2 + (1 - np.tanh(min_b_des_b_dist**2))
else:
# Hit ball and land
min_b_des_b_land_dist = np.linalg.norm(self._goal_pos[:2] - self._ball_landing_pos[:2])
over_net_bonus = int(self._ball_landing_pos[0] < 0)
return 2 + 4 * (1 - np.tanh(min_b_des_b_land_dist ** 2)) + over_net_bonus
def _get_traj_invalid_penalty(self, action, pos_traj, tau_bound, delay_bound):
tau_invalid_penalty = 3 * (np.max([0, action[0] - tau_bound[1]]) + np.max([0, tau_bound[0] - action[0]]))
delay_invalid_penalty = 3 * (np.max([0, action[1] - delay_bound[1]]) + np.max([0, delay_bound[0] - action[1]]))
violate_high_bound_error = np.mean(np.maximum(pos_traj - jnt_pos_high, 0))
violate_low_bound_error = np.mean(np.maximum(jnt_pos_low - pos_traj, 0))
invalid_penalty = tau_invalid_penalty + delay_invalid_penalty + \
violate_high_bound_error + violate_low_bound_error
return -invalid_penalty
def get_invalid_traj_step_penalty(self, pos_traj):
violate_high_bound_error = (
np.maximum(pos_traj - jnt_pos_high, 0).mean())
violate_low_bound_error = (
np.maximum(jnt_pos_low - pos_traj, 0).mean())
invalid_penalty = violate_high_bound_error + violate_low_bound_error
def _update_game_state(self, action):
for _ in range(self.frame_skip):
if self._enable_artificial_wind:
self.data.qfrc_applied[-2] = self._artificial_force
try:
self.do_simulation(action, 1)
except Exception as e:
print("Simulation get unstable return with MujocoException: ", e)
unstable_simulation = True
self._terminated = True
break
# Update game state
if not self._terminated:
if not self._hit_ball:
self._hit_ball = self._contact_checker(self._ball_contact_id, self._bat_front_id) or \
self._contact_checker(self._ball_contact_id, self._bat_back_id)
if not self._hit_ball:
ball_land_on_floor_no_hit = self._contact_checker(self._ball_contact_id, self._floor_contact_id)
if ball_land_on_floor_no_hit:
self._ball_landing_pos = self.data.body("target_ball").xpos.copy()
self._terminated = True
if self._hit_ball and not self._ball_contact_after_hit:
if self._contact_checker(self._ball_contact_id, self._floor_contact_id): # first check contact with floor
self._ball_contact_after_hit = True
self._ball_landing_pos = self.data.geom("target_ball_contact").xpos.copy()
self._terminated = True
elif self._contact_checker(self._ball_contact_id, self._table_contact_id): # second check contact with table
self._ball_contact_after_hit = True
self._ball_landing_pos = self.data.geom("target_ball_contact").xpos.copy()
if self._ball_landing_pos[0] < 0.: # ball lands on the opponent side
self._ball_return_success = True
self._terminated = True
# update ball trajectory & racket trajectory
self._ball_traj.append(self.data.body("target_ball").xpos.copy())
self._racket_traj.append(self.data.geom("bat").xpos.copy())
def ball_racket_contact(self):
return self._contact_checker(self._ball_contact_id, self._bat_front_id) or \
self._contact_checker(self._ball_contact_id, self._bat_back_id)
def step(self, action):
if not self._id_set:
self._set_ids()
unstable_simulation = False
hit_already = self._hit_ball
if self._steps == self._goal_switching_step and self.np_random.uniform() < 0.5:
new_goal_pos = self._generate_goal_pos(random=True)
new_goal_pos[1] = -new_goal_pos[1]
self._goal_pos = new_goal_pos
self.model.body_pos[5] = np.concatenate([self._goal_pos, [0.77]])
mujoco.mj_forward(self.model, self.data)
self._update_game_state(action)
self._steps += 1
obs = self._get_obs()
# Compute reward
if unstable_simulation:
reward = -25
else:
# reward = self._get_reward(self._terminated)
# hit_now = not hit_already and self._hit_ball
hit_finish = self._hit_ball and not self.ball_racket_contact()
if hit_finish:
# Clean the ball and racket traj before hit
self._ball_traj = []
self._racket_traj = []
# Simulate the rest of the traj
reward = self._get_reward2(True, False)
while self._steps < MAX_EPISODE_STEPS_TABLE_TENNIS_MARKOV_VER:
land_already = self._ball_landing_pos is not None
self._update_game_state(np.zeros_like(action))
self._steps += 1
land_now = (not land_already
and self._ball_landing_pos is not None)
temp_reward = self._get_reward2(False, land_now)
# print(temp_reward)
reward += temp_reward
# Uncomment the line below to visualize the sim after hit
# self.render(mode="human")
else:
reward = self._get_reward2(False, False)
# Update ball landing error
land_dist_err = np.linalg.norm(self._ball_landing_pos[:-1] - self._goal_pos) \
if self._ball_landing_pos is not None else 10.
info = {
"hit_ball": self._hit_ball,
"ball_returned_success": self._ball_return_success,
"land_dist_error": land_dist_err,
"is_success": self._ball_return_success and land_dist_err < 0.2,
"num_steps": self._steps,
}
terminated, truncated = self._terminated, self._steps == MAX_EPISODE_STEPS_TABLE_TENNIS_MARKOV_VER
return obs, reward, terminated, truncated, info
class TableTennisWind(TableTennisEnv):
def __init__(self, ctxt_dim: int = 4, frame_skip: int = 4, **kwargs):
@ -296,7 +503,17 @@ class TableTennisWind(TableTennisEnv):
])
return obs
class TableTennisGoalSwitching(TableTennisEnv):
def __init__(self, frame_skip: int = 4, goal_switching_step: int = 99, **kwargs):
super().__init__(frame_skip=frame_skip, goal_switching_step=goal_switching_step, **kwargs)
class TableTennisRandomInit(TableTennisEnv):
def __init__(self, ctxt_dim: int = 4, frame_skip: int = 4,
random_pos_scale: float = 1.0,
random_vel_scale: float = 0.0,
**kwargs):
super().__init__(ctxt_dim=ctxt_dim, frame_skip=frame_skip,
random_pos_scale=random_pos_scale,
random_vel_scale=random_vel_scale,
**kwargs)

View File

@ -2,6 +2,10 @@ import numpy as np
jnt_pos_low = np.array([-2.6, -2.0, -2.8, -0.9, -4.8, -1.6, -2.2])
jnt_pos_high = np.array([2.6, 2.0, 2.8, 3.1, 1.3, 1.6, 2.2])
jnt_vel_low = np.ones(7) * -7
jnt_vel_high = np.ones(7) * 7
delay_bound = [0.05, 0.15]
tau_bound = [0.5, 1.5]
@ -48,4 +52,4 @@ def magnus_force(top_spin=0.0, side_spin=0.0, v_ball=np.zeros(3), v_wind=np.zero
C_l = 4.68 * 10e-4 - 2.0984 * 10e-5 * (np.linalg.norm(v_ball) - 50) # Lift force coeffient or simply 1.23
w = np.array([0.0, top_spin, side_spin]) # Angular velocity of ball
f_m = 0.5 * rho * A * C_l * np.linalg.norm(v_ball-v_wind) * np.cross(w, v_ball-v_wind)
return f_m
return f_m

View File

@ -79,6 +79,8 @@ class Walker2dEnvCustomXML(Walker2dEnv):
**kwargs,
)
self.render_active = False
class Walker2dJumpEnv(Walker2dEnvCustomXML):
"""
@ -145,8 +147,15 @@ class Walker2dJumpEnv(Walker2dEnvCustomXML):
}
truncated = False
if self.render_active and self.render_mode=='human':
self.render()
return observation, reward, terminated, truncated, info
def render(self):
self.render_active = True
return super().render()
def _get_obs(self):
return np.append(super()._get_obs(), self.goal)

View File

@ -3,14 +3,14 @@ import fancy_gym
def example_run_replanning_env(env_name="fancy_ProDMP/BoxPushingDenseReplan-v0", seed=1, iterations=1, render=False):
env = gym.make(env_name)
env = gym.make(env_name, render_mode='human' if render else None)
env.reset(seed=seed)
for i in range(iterations):
while True:
ac = env.action_space.sample()
obs, reward, terminated, truncated, info = env.step(ac)
if render:
env.render(mode="human")
env.render()
if terminated or truncated:
env.reset()
break
@ -38,13 +38,13 @@ def example_custom_replanning_envs(seed=0, iteration=100, render=True):
'replanning_schedule': lambda pos, vel, obs, action, t: t % 25 == 0,
'condition_on_desired': True}
base_env = gym.make(base_env_id)
base_env = gym.make(base_env_id, render_mode='human' if render else None)
env = fancy_gym.make_bb(env=base_env, wrappers=wrappers, black_box_kwargs=black_box_kwargs,
traj_gen_kwargs=trajectory_generator_kwargs, controller_kwargs=controller_kwargs,
phase_kwargs=phase_generator_kwargs, basis_kwargs=basis_generator_kwargs,
seed=seed)
if render:
env.render(mode="human")
env.render()
obs = env.reset()

View File

@ -17,7 +17,7 @@ def example_dmc(env_id="dm_control/fish-swim", seed=1, iterations=1000, render=T
Returns:
"""
env = gym.make(env_id)
env = gym.make(env_id, render_mode='human' if render else None)
rewards = 0
obs = env.reset(seed=seed)
print("observation shape:", env.observation_space.shape)
@ -26,7 +26,7 @@ def example_dmc(env_id="dm_control/fish-swim", seed=1, iterations=1000, render=T
for i in range(iterations):
ac = env.action_space.sample()
if render:
env.render(mode="human")
env.render()
obs, reward, terminated, truncated, info = env.step(ac)
rewards += reward
@ -84,7 +84,7 @@ def example_custom_dmc_and_mp(seed=1, iterations=1, render=True):
# basis_generator_kwargs = {'basis_generator_type': 'rbf',
# 'num_basis': 5
# }
base_env = gym.make(base_env_id)
base_env = gym.make(base_env_id, render_mode='human' if render else None)
env = fancy_gym.make_bb(env=base_env, wrappers=wrappers, black_box_kwargs={},
traj_gen_kwargs=trajectory_generator_kwargs, controller_kwargs=controller_kwargs,
phase_kwargs=phase_generator_kwargs, basis_kwargs=basis_generator_kwargs,
@ -96,7 +96,7 @@ def example_custom_dmc_and_mp(seed=1, iterations=1, render=True):
# It is also possible to change them mode multiple times when
# e.g. only every nth trajectory should be displayed.
if render:
env.render(mode="human")
env.render()
rewards = 0
obs = env.reset()
@ -115,7 +115,7 @@ def example_custom_dmc_and_mp(seed=1, iterations=1, render=True):
env.close()
del env
def main(render = True):
def main(render = False):
# # Standard DMC Suite tasks
example_dmc("dm_control/fish-swim", seed=10, iterations=1000, render=render)
#

View File

@ -21,7 +21,7 @@ def example_general(env_id="Pendulum-v1", seed=1, iterations=1000, render=True):
"""
env = gym.make(env_id)
env = gym.make(env_id, render_mode='human' if render else None)
rewards = 0
obs = env.reset(seed=seed)
print("Observation shape: ", env.observation_space.shape)
@ -85,7 +85,7 @@ def example_async(env_id="fancy/HoleReacher-v0", n_cpu=4, seed=int('533D', 16),
# do not return values above threshold
return *map(lambda v: np.stack(v)[:n_samples], buffer.values()),
def main(render = True):
def main(render = False):
# Basic gym task
example_general("Pendulum-v1", seed=10, iterations=200, render=render)

View File

@ -2,7 +2,7 @@ import gymnasium as gym
import fancy_gym
def example_meta(env_id="fish-swim", seed=1, iterations=1000, render=True):
def example_meta(env_id="metaworld/button-press-v2", seed=1, iterations=1000, render=True):
"""
Example for running a MetaWorld based env in the step based setting.
The env_id has to be specified as `task_name-v2`. V1 versions are not supported and we always
@ -18,7 +18,7 @@ def example_meta(env_id="fish-swim", seed=1, iterations=1000, render=True):
Returns:
"""
env = gym.make(env_id)
env = gym.make(env_id, render_mode='human' if render else None)
rewards = 0
obs = env.reset(seed=seed)
print("observation shape:", env.observation_space.shape)
@ -27,9 +27,7 @@ def example_meta(env_id="fish-swim", seed=1, iterations=1000, render=True):
for i in range(iterations):
ac = env.action_space.sample()
if render:
# THIS NEEDS TO BE SET TO FALSE FOR NOW, BECAUSE THE INTERFACE FOR RENDERING IS DIFFERENT TO BASIC GYM
# TODO: Remove this, when Metaworld fixes its interface.
env.render(False)
env.render()
obs, reward, terminated, truncated, info = env.step(ac)
rewards += reward
if terminated or truncated:
@ -81,7 +79,7 @@ def example_custom_meta_and_mp(seed=1, iterations=1, render=True):
basis_generator_kwargs = {'basis_generator_type': 'rbf',
'num_basis': 5
}
base_env = gym.make(base_env_id)
base_env = gym.make(base_env_id, render_mode='human' if render else None)
env = fancy_gym.make_bb(env=base_env, wrappers=wrappers, black_box_kwargs={},
traj_gen_kwargs=trajectory_generator_kwargs, controller_kwargs=controller_kwargs,
phase_kwargs=phase_generator_kwargs, basis_kwargs=basis_generator_kwargs,
@ -93,7 +91,7 @@ def example_custom_meta_and_mp(seed=1, iterations=1, render=True):
# It is also possible to change them mode multiple times when
# e.g. only every nth trajectory should be displayed.
if render:
env.render(mode="human")
env.render()
rewards = 0
obs = env.reset(seed=seed)

View File

@ -13,15 +13,13 @@ def example_mp(env_name, seed=1, render=True):
Returns:
"""
env = gym.make(env_name)
env = gym.make(env_name, render_mode='human' if render else None)
returns = 0
obs = env.reset(seed=seed)
# number of samples/full trajectories (multiple environment steps)
for i in range(10):
if render and i % 2 == 0:
env.render(mode="human")
else:
env.render()
ac = env.action_space.sample()
obs, reward, terminated, truncated, info = env.step(ac)

View File

@ -52,7 +52,7 @@ class FixMetaworldIgnoresSeedOnResetWrapper(gym.Wrapper, gym.utils.RecordConstru
def reset(self, **kwargs):
if 'seed' in kwargs:
print('[!] You just called .reset on a Metaworld env and supplied a seed. Metaworld curretly does not correctly implement seeding. Do not rely on deterministic behavior.')
print('[Fancy Gym] You just called .reset on a Metaworld env and supplied a seed. Metaworld curretly does not correctly implement seeding. Do not rely on deterministic behavior.')
self.env.seed(kwargs['seed'])
return self.env.reset(**kwargs)

View File

@ -1,6 +1,6 @@
[project]
name = "fancy_gym"
version = "0.1.4"
version = "0.3.0"
description = "Fancy Gym: Unifying interface for various RL benchmarks with support for Black Box approaches."
readme = "README.md"
authors = [
@ -26,6 +26,7 @@ classifiers = [
]
dependencies = [
"toml",
"mp_pytorch<=0.1.3",
"mujoco==2.3.3",
"gymnasium[mujoco]>=0.26.0"
@ -40,7 +41,7 @@ requires-python = ">=3.7"
#"Repository" = "https://github.com/ALRhub/fancy_gym/"
[build-system]
requires = ["setuptools>=61.0.0", "wheel"]
requires = ["setuptools>=61.0.0", "wheel", "toml"]
build-backend = "setuptools.build_meta"
[project.optional-dependencies]

View File

@ -1,5 +1,6 @@
# We still provide a setup.py for backwards compatability.
# But the pyproject.toml should be prefered.
import toml
import itertools
from pathlib import Path
from typing import List
@ -8,6 +9,9 @@ from setuptools import setup, find_packages
print('[!] You are currently installing/building fancy_gym via setup.py. This is only provided for backwards-compatability. Please use the pyproject.toml instead.')
pyproject_content = toml.load("pyproject.toml")
project_version = pyproject_content["project"]["version"]
# Environment-specific dependencies for dmc and metaworld
extras = {
'dmc': ['shimmy[dm-control]', 'Shimmy==1.0.0'],
@ -38,7 +42,7 @@ def find_package_data(extensions_to_include: List[str]) -> List[str]:
setup(
author='Fabian Otto, Onur Celik, Dominik Roth, Hongyi Zhou',
name='fancy_gym',
version='0.1.0',
version=project_version,
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Science/Research',
@ -55,6 +59,7 @@ setup(
],
extras_require=extras,
install_requires=[
'toml',
'mp_pytorch<=0.1.3',
'mujoco==2.3.3',
'gymnasium[mujoco]>=0.26.0'