from mp_lib import det_promp import numpy as np import gym class DetPMPEnvWrapperBase(gym.Wrapper): def __init__(self, env, num_dof, num_basis, width, start_pos=None, duration=1, dt=0.01, post_traj_time=0., policy=None, weights_scale=1): super(DetPMPEnvWrapperBase, self).__init__(env) self.num_dof = num_dof self.num_basis = num_basis self.dim = num_dof * num_basis self.pmp = det_promp.DeterministicProMP(n_basis=num_basis, width=width, off=0.01) weights = np.zeros(shape=(num_basis, num_dof)) self.pmp.set_weights(duration, weights) self.weights_scale = weights_scale self.duration = duration self.dt = dt self.post_traj_steps = int(post_traj_time / dt) self.start_pos = start_pos self.policy = policy def __call__(self, params): params = np.atleast_2d(params) observations = [] rewards = [] dones = [] infos = [] for p in params: observation, reward, done, info = self.rollout(p) observations.append(observation) rewards.append(reward) dones.append(done) infos.append(info) return np.array(rewards), infos def rollout(self, params, render=False): """ This function generates a trajectory based on a DMP and then does the usual loop over reset and step""" raise NotImplementedError class DetPMPEnvWrapperPD(DetPMPEnvWrapperBase): """ Wrapper for gym environments which creates a trajectory in joint velocity space """ def rollout(self, params, render=False): params = np.reshape(params, newshape=(self.num_basis, self.num_dof)) * self.weights_scale self.pmp.set_weights(self.duration, params) t, des_pos, des_vel, des_acc = self.pmp.compute_trajectory(1/self.dt, 1.) des_pos += self.start_pos[None, :] if self.post_traj_steps > 0: des_pos = np.vstack([des_pos, np.tile(des_pos[-1, :], [self.post_traj_steps, 1])]) des_vel = np.vstack([des_vel, np.zeros(shape=(self.post_traj_steps, self.num_dof))]) self._trajectory = des_pos rews = [] infos = [] self.env.reset() for t, pos_vel in enumerate(zip(des_pos, des_vel)): ac = self.policy.get_action(self.env, pos_vel[0], pos_vel[1]) obs, rew, done, info = self.env.step(ac) rews.append(rew) infos.append(info) if render: self.env.render(mode="human") if done: break reward = np.sum(rews) return obs, reward, done, info