import alr_envs def example_mp(env_name, seed=1): """ Example for running a motion primitive based version of a OpenAI-gym environment, which is already registered. For more information on motion primitive specific stuff, look at the mp examples. Args: env_name: ProMP env_id seed: seed Returns: """ # While in this case gym.make() is possible to use as well, we recommend our custom make env function. env = alr_envs.make(env_name, seed) rewards = 0 obs = env.reset() # number of samples/full trajectories (multiple environment steps) for i in range(10): ac = env.action_space.sample() obs, reward, done, info = env.step(ac) rewards += reward if done: print(rewards) rewards = 0 obs = env.reset() if __name__ == '__main__': # DMP - not supported yet # example_mp("ReacherDMP-v2") # DetProMP example_mp("ContinuousMountainCarProMP-v0") example_mp("ReacherProMP-v2") example_mp("FetchReachDenseProMP-v1") example_mp("FetchSlideDenseProMP-v1")