import gym import numpy as np from fancy_gym import make def run_env(env_id, iterations=None, seed=0, render=False): """ Example for running a DMC based env in the step based setting. The env_id has to be specified as `dmc:domain_name-task_name` or for manipulation tasks as `manipulation-environment_name` Args: env_id: Either `dmc:domain_name-task_name` or `dmc:manipulation-environment_name` iterations: Number of rollout steps to run seed: random seeding render: Render the episode Returns: observations, rewards, dones, actions """ env: gym.Env = make(env_id, seed=seed) rewards = [] observations = [] actions = [] dones = [] obs = env.reset() print(obs.dtype) verify_observations(obs, env.observation_space, "reset()") iterations = iterations or (env.spec.max_episode_steps or 1) # number of samples(multiple environment steps) for i in range(iterations): observations.append(obs) ac = env.action_space.sample() actions.append(ac) # ac = np.random.uniform(env.action_space.low, env.action_space.high, env.action_space.shape) obs, reward, done, info = env.step(ac) verify_observations(obs, env.observation_space, "step()") verify_reward(reward) verify_done(done) rewards.append(reward) dones.append(done) if render: env.render("human") if done: break assert done, "Done flag is not True after end of episode." observations.append(obs) env.close() del env return np.array(observations), np.array(rewards), np.array(dones), np.array(actions) def run_env_determinism(env_id: str, seed: int): traj1 = run_env(env_id, seed=seed) traj2 = run_env(env_id, seed=seed) # Iterate over two trajectories, which should have the same state and action sequence for i, time_step in enumerate(zip(*traj1, *traj2)): obs1, rwd1, done1, ac1, obs2, rwd2, done2, ac2 = time_step assert np.array_equal(obs1, obs2), f"Observations [{i}] {obs1} and {obs2} do not match." assert np.array_equal(ac1, ac2), f"Actions [{i}] {ac1} and {ac2} do not match." assert np.array_equal(rwd1, rwd2), f"Rewards [{i}] {rwd1} and {rwd2} do not match." assert np.array_equal(done1, done2), f"Dones [{i}] {done1} and {done2} do not match." def verify_observations(obs, observation_space: gym.Space, obs_type="reset()"): assert observation_space.contains(obs), \ f"Observation {obs} received from {obs_type} not contained in observation space {observation_space}." def verify_reward(reward): assert isinstance(reward, (float, int)), f"Returned type {type(reward)} as reward, expected float or int." def verify_done(done): assert isinstance(done, bool), f"Returned {done} as done flag, expected bool."