from typing import Tuple, Union import numpy as np from mp_env_api.interface_wrappers.mp_env_wrapper import MPEnvWrapper class DMCReachSiteMPWrapper(MPEnvWrapper): @property def active_obs(self): # Joint and target positions are randomized, velocities are always set to 0. return np.hstack([ [True] * 3, # target position [True] * 12, # sin/cos arm joint position [True] * 6, # arm joint torques [False] * 6, # arm joint velocities [True] * 3, # sin/cos hand joint position [False] * 3, # hand joint velocities [True] * 3, # hand pinch site position [True] * 9, # pinch site rmat ]) @property def current_pos(self) -> Union[float, int, np.ndarray]: return self.env.physics.named.data.qpos[:] @property def current_vel(self) -> Union[float, int, np.ndarray, Tuple]: return self.env.physics.named.data.qvel[:] @property def goal_pos(self) -> Union[float, int, np.ndarray, Tuple]: raise ValueError("Goal position is not available and has to be learnt based on the environment.") @property def dt(self) -> Union[float, int]: return self.env.dt