import numpy as np from alr_envs.stochastic_search.functions.f_base import BaseObjective class Rosenbrock(BaseObjective): def __init__(self, dim, int_opt=(-3., 3.)): super(Rosenbrock, self).__init__(dim, int_opt=int_opt) self.c = np.maximum(1, np.sqrt(self.dim) / 8) def evaluate_full(self, x): x = np.atleast_2d(x) assert x.shape[1] == self.dim z = self.c * (x - self.x_opt) + 1 z_end = z[:, 1:] z_begin = z[:, :-1] a = z_begin ** 2 - z_end b = z_begin - 1 return np.sum(100 * a ** 2 + b ** 2, axis=1) + self.f_opt class RosenbrockRotated(BaseObjective): def __init__(self, dim, int_opt=(-3., 3.)): super(RosenbrockRotated, self).__init__(dim, int_opt=int_opt) self.c = np.maximum(1, np.sqrt(self.dim) / 8) def evaluate_full(self, x): x = np.atleast_2d(x) assert x.shape[1] == self.dim z = (self.c * self.r @ x.T + 1 / 2).T a = z[:, :-1] ** 2 - z[:, 1:] b = z[:, :-1] - 1 return np.sum(100 * a ** 2 + b ** 2, axis=1) + self.f_opt class RosenbrockRaw(BaseObjective): def __init__(self, dim, int_opt=(-3., 3.)): super(RosenbrockRaw, self).__init__(dim, int_opt=int_opt) self.x_opt = np.ones((1, dim)) self.f_opt = 0 def evaluate_full(self, x): x = np.atleast_2d(x) assert x.shape[1] == self.dim a = x[:, :-1] ** 2 - x[:, 1:] b = x[:, :-1] - 1 out = np.sum(100 * a ** 2 + b ** 2, axis=1) return out