import gym import numpy as np from fancy_gym import make def run_env(env_id, iterations=None, seed=SEED, render=False): """ Example for running a DMC based env in the step based setting. The env_id has to be specified as `domain_name-task_name` or for manipulation tasks as `manipulation-environment_name` Args: env_id: Either `domain_name-task_name` or `manipulation-environment_name` iterations: Number of rollout steps to run seed= random seeding render: Render the episode Returns: """ env: gym.Env = make(env_id, seed=seed) rewards = [] observations = [] dones = [] obs = env.reset() _verify_observations(obs, env.observation_space, "reset()") length = env.spec.max_episode_steps if iterations is None: if length is None: iterations = 1 else: iterations = length # number of samples(multiple environment steps) for i in range(iterations): observations.append(obs) ac = env.action_space.sample() # ac = np.random.uniform(env.action_space.low, env.action_space.high, env.action_space.shape) obs, reward, done, info = env.step(ac) _verify_observations(obs, env.observation_space, "step()") _verify_reward(reward) _verify_done(done) rewards.append(reward) dones.append(done) if render: env.render("human") if done: obs = env.reset() assert done, "Done flag is not True after max episode length." observations.append(obs) env.close() del env return np.array(observations), np.array(rewards), np.array(dones) def _run_env_determinism(self, env_id: str, seed: int): traj1 = self.run_env(env_id, seed=seed) traj2 = self.run_env(env_id, seed=seed) # Iterate over two trajectories, which should have the same state and action sequence for i, time_step in enumerate(zip(*traj1, *traj2)): obs1, rwd1, done1, obs2, rwd2, done2 = time_step self.assertTrue(np.array_equal(obs1, obs2), f"Observations [{i}] {obs1} and {obs2} do not match.") self.assertEqual(rwd1, rwd2, f"Rewards [{i}] {rwd1} and {rwd2} do not match.") self.assertEqual(done1, done2, f"Dones [{i}] {done1} and {done2} do not match.") def _verify_observations(obs, observation_space, obs_type="reset()"): assert observation_space.contains(obs), \ f"Observation {obs} received from {obs_type} not contained in observation space {observation_space}." def _verify_reward(reward): assert isinstance(reward, float), f"Returned {reward} as reward, expected float." def _verify_done(done): assert isinstance(done, bool), f"Returned {done} as done flag, expected bool."