from mp_lib.phase import ExpDecayPhaseGenerator from mp_lib.basis import DMPBasisGenerator from mp_lib import dmps import numpy as np import gym from alr_envs.utils.wrapper.mp_wrapper import MPWrapper class DmpWrapper(MPWrapper): def __init__(self, env: gym.Env, num_dof: int, num_basis: int, start_pos: np.ndarray = None, final_pos: np.ndarray = None, duration: int = 1, alpha_phase: float = 2., dt: float = None, learn_goal: bool = False, return_to_start: bool = False, post_traj_time: float = 0., weights_scale: float = 1., goal_scale: float = 1., bandwidth_factor: float = 3., policy_type: str = None, render_mode: str = None): """ This Wrapper generates a trajectory based on a DMP and will only return episodic performances. Args: env: num_dof: num_basis: start_pos: final_pos: duration: alpha_phase: dt: learn_goal: post_traj_time: policy_type: weights_scale: goal_scale: """ self.learn_goal = learn_goal dt = env.dt if hasattr(env, "dt") else dt assert dt is not None start_pos = start_pos if start_pos is not None else env.start_pos if hasattr(env, "start_pos") else None # TODO: assert start_pos is not None # start_pos will be set in initialize, do we need this here? if learn_goal: # final_pos = np.zeros_like(start_pos) # arbitrary, will be learned final_pos = np.zeros((1, num_dof)) # arbitrary, will be learned else: final_pos = final_pos if final_pos is not None else start_pos if return_to_start else None assert final_pos is not None self.t = np.linspace(0, duration, int(duration / dt)) self.goal_scale = goal_scale super().__init__(env, num_dof, duration, dt, post_traj_time, policy_type, weights_scale, render_mode, num_basis=num_basis, start_pos=start_pos, final_pos=final_pos, alpha_phase=alpha_phase, bandwidth_factor=bandwidth_factor) action_bounds = np.inf * np.ones((np.prod(self.mp.dmp_weights.shape) + (num_dof if learn_goal else 0))) self.action_space = gym.spaces.Box(low=-action_bounds, high=action_bounds, dtype=np.float32) def initialize_mp(self, num_dof: int, duration: int, dt: float, num_basis: int = 5, start_pos: np.ndarray = None, final_pos: np.ndarray = None, alpha_phase: float = 2., bandwidth_factor: float = 3.): phase_generator = ExpDecayPhaseGenerator(alpha_phase=alpha_phase, duration=duration) basis_generator = DMPBasisGenerator(phase_generator, duration=duration, num_basis=num_basis, basis_bandwidth_factor=bandwidth_factor) dmp = dmps.DMP(num_dof=num_dof, basis_generator=basis_generator, phase_generator=phase_generator, num_time_steps=int(duration / dt), dt=dt) # dmp.dmp_start_pos = start_pos.reshape((1, num_dof)) # in a contextual environment, the start_pos may be not fixed, set in mp_rollout? # TODO: Should we set start_pos in init at all? It's only used after calling rollout anyway... dmp.dmp_start_pos = start_pos.reshape((1, num_dof)) if start_pos is not None else np.zeros((1, num_dof)) weights = np.zeros((num_basis, num_dof)) goal_pos = np.zeros(num_dof) if self.learn_goal else final_pos dmp.set_weights(weights, goal_pos) return dmp def goal_and_weights(self, params): assert params.shape[-1] == self.action_space.shape[0] params = np.atleast_2d(params) if self.learn_goal: goal_pos = params[0, -self.mp.num_dimensions:] # [num_dof] params = params[:, :-self.mp.num_dimensions] # [1,num_dof] # weight_matrix = np.reshape(params[:, :-self.num_dof], [self.num_basis, self.num_dof]) else: goal_pos = self.mp.dmp_goal_pos.flatten() assert goal_pos is not None # weight_matrix = np.reshape(params, [self.num_basis, self.num_dof]) weight_matrix = np.reshape(params, self.mp.dmp_weights.shape) return goal_pos * self.goal_scale, weight_matrix * self.weights_scale def mp_rollout(self, action): if self.mp.start_pos is None: self.mp.start_pos = self.env.start_pos goal_pos, weight_matrix = self.goal_and_weights(action) self.mp.set_weights(weight_matrix, goal_pos) return self.mp.reference_trajectory(self.t)