from typing import Union import numpy as np from mp_env_api import MPEnvWrapper class MPWrapper(MPEnvWrapper): @property def active_obs(self): return np.hstack([ [False] * 3, # achieved goal [True] * 3, # desired/true goal [False] * 3, # grip pos [True, True, False] * int(self.has_object), # object position [True, True, False] * int(self.has_object), # object relative position [False] * 2, # gripper state [False] * 3 * int(self.has_object), # object rotation [False] * 3 * int(self.has_object), # object velocity position [False] * 3 * int(self.has_object), # object velocity rotation [False] * 3, # grip velocity position [False] * 2, # gripper velocity ]).astype(bool) @property def current_vel(self) -> Union[float, int, np.ndarray]: dt = self.sim.nsubsteps * self.sim.model.opt.timestep grip_velp = self.sim.data.get_site_xvelp("robot0:grip") * dt # gripper state should be symmetric for left and right. # They are controlled with only one action for both gripper joints gripper_state = self.sim.data.get_joint_qvel('robot0:r_gripper_finger_joint') * dt return np.hstack([grip_velp, gripper_state]) @property def current_pos(self) -> Union[float, int, np.ndarray]: grip_pos = self.sim.data.get_site_xpos("robot0:grip") # gripper state should be symmetric for left and right. # They are controlled with only one action for both gripper joints gripper_state = self.sim.data.get_joint_qpos('robot0:r_gripper_finger_joint') return np.hstack([grip_pos, gripper_state]) @property def goal_pos(self): raise ValueError("Goal position is not available and has to be learnt based on the environment.") @property def dt(self) -> Union[float, int]: return self.env.dt