# Adopted from: https://github.com/denisyarats/dmc2gym/blob/master/dmc2gym/wrappers.py # License: MIT # Copyright (c) 2020 Denis Yarats import matplotlib.pyplot as plt from gym import core, spaces from dm_control import suite, manipulation from dm_env import specs import numpy as np def _spec_to_box(spec): def extract_min_max(s): assert s.dtype == np.float64 or s.dtype == np.float32, f"Only float64 and float32 types are allowed, instead {s.dtype} was found" dim = int(np.prod(s.shape)) if type(s) == specs.Array: bound = np.inf * np.ones(dim, dtype=np.float32) return -bound, bound elif type(s) == specs.BoundedArray: zeros = np.zeros(dim, dtype=np.float32) return s.minimum + zeros, s.maximum + zeros mins, maxs = [], [] for s in spec: mn, mx = extract_min_max(s) mins.append(mn) maxs.append(mx) low = np.concatenate(mins, axis=0) high = np.concatenate(maxs, axis=0) assert low.shape == high.shape return spaces.Box(low, high, dtype=np.float32) def _flatten_obs(obs): obs_pieces = [] for v in obs.values(): flat = np.array([v]) if np.isscalar(v) else v.ravel() obs_pieces.append(flat) return np.concatenate(obs_pieces, axis=0) class DMCWrapper(core.Env): def __init__( self, domain_name, task_name, task_kwargs=None, visualize_reward={}, from_pixels=False, height=84, width=84, camera_id=0, frame_skip=1, environment_kwargs=None, channels_first=True ): assert 'random' in task_kwargs, 'please specify a seed, for deterministic behaviour' self._from_pixels = from_pixels self._height = height self._width = width self._camera_id = camera_id self._frame_skip = frame_skip self._channels_first = channels_first # create task if domain_name == "manipulation": assert not from_pixels, \ "TODO: Vision interface for manipulation is different to suite and needs to be implemented" self._env = manipulation.load( environment_name=task_name, seed=task_kwargs['random'] ) else: self._env = suite.load( domain_name=domain_name, task_name=task_name, task_kwargs=task_kwargs, visualize_reward=visualize_reward, environment_kwargs=environment_kwargs ) # true and normalized action spaces self._true_action_space = _spec_to_box([self._env.action_spec()]) self._norm_action_space = spaces.Box( low=-1.0, high=1.0, shape=self._true_action_space.shape, dtype=np.float32 ) # create observation space if from_pixels: shape = [3, height, width] if channels_first else [height, width, 3] self._observation_space = spaces.Box( low=0, high=255, shape=shape, dtype=np.uint8 ) else: self._observation_space = _spec_to_box( self._env.observation_spec().values() ) self._state_space = _spec_to_box( self._env.observation_spec().values() ) self.current_state = None # set seed self.seed(seed=task_kwargs.get('random', 1)) def __getattr__(self, name): return getattr(self._env, name) def _get_obs(self, time_step): if self._from_pixels: obs = self.render( mode="rgb_array", height=self._height, width=self._width, camera_id=self._camera_id ) if self._channels_first: obs = obs.transpose(2, 0, 1).copy() else: obs = _flatten_obs(time_step.observation) return obs def _convert_action(self, action): action = action.astype(float) true_delta = self._true_action_space.high - self._true_action_space.low norm_delta = self._norm_action_space.high - self._norm_action_space.low action = (action - self._norm_action_space.low) / norm_delta action = action * true_delta + self._true_action_space.low action = action.astype(np.float32) return action @property def observation_space(self): return self._observation_space @property def state_space(self): return self._state_space @property def action_space(self): return self._norm_action_space def seed(self, seed): self._true_action_space.seed(seed) self._norm_action_space.seed(seed) self._observation_space.seed(seed) def step(self, action): assert self._norm_action_space.contains(action) action = self._convert_action(action) assert self._true_action_space.contains(action) reward = 0 extra = {'internal_state': self._env.physics.get_state().copy()} for _ in range(self._frame_skip): time_step = self._env.step(action) reward += time_step.reward or 0 done = time_step.last() if done: break obs = self._get_obs(time_step) self.current_state = _flatten_obs(time_step.observation) extra['discount'] = time_step.discount return obs, reward, done, extra def reset(self): time_step = self._env.reset() self.current_state = _flatten_obs(time_step.observation) obs = self._get_obs(time_step) return obs def render(self, mode='rgb_array', height=None, width=None, camera_id=0): assert mode == 'rgb_array', 'only support rgb_array mode, given %s' % mode height = height or self._height width = width or self._width camera_id = camera_id or self._camera_id return self._env.physics.render(height=height, width=width, camera_id=camera_id)