from abc import abstractmethod, ABC from typing import Union import gym import numpy as np class AlrEnv(gym.Env, ABC): @property def active_obs(self): """Returns boolean mask for each observation entry whether the observation is returned for the contextual case or not. This effectively allows to filter unwanted or unnecessary observations from the full step-based case. """ return np.ones(self.observation_space.shape, dtype=bool) @property @abstractmethod def start_pos(self) -> Union[float, int, np.ndarray]: """ Returns the starting position of the joints """ raise NotImplementedError() @property def goal_pos(self) -> Union[float, int, np.ndarray]: """ Returns the current final position of the joints for the MP. By default this returns the starting position. """ return self.start_pos @property @abstractmethod def dt(self) -> Union[float, int]: """ Returns the time between two simulated steps of the environment """ raise NotImplementedError()