import gym import numpy as np from mp_lib import dmps from mp_lib.basis import DMPBasisGenerator from mp_lib.phase import ExpDecayPhaseGenerator from alr_envs.utils.mps.alr_env import AlrEnv from alr_envs.utils.mps.mp_wrapper import MPWrapper class DmpWrapper(MPWrapper): def __init__(self, env: AlrEnv, num_dof: int, num_basis: int, duration: int = 1, alpha_phase: float = 2., dt: float = None, learn_goal: bool = False, post_traj_time: float = 0., weights_scale: float = 1., goal_scale: float = 1., bandwidth_factor: float = 3., policy_type: str = None, render_mode: str = None): """ This Wrapper generates a trajectory based on a DMP and will only return episodic performances. Args: env: num_dof: num_basis: duration: alpha_phase: dt: learn_goal: post_traj_time: policy_type: weights_scale: goal_scale: """ self.learn_goal = learn_goal self.t = np.linspace(0, duration, int(duration / dt)) self.goal_scale = goal_scale super().__init__(env=env, num_dof=num_dof, duration=duration, post_traj_time=post_traj_time, policy_type=policy_type, weights_scale=weights_scale, render_mode=render_mode, num_basis=num_basis, alpha_phase=alpha_phase, bandwidth_factor=bandwidth_factor) action_bounds = np.inf * np.ones((np.prod(self.mp.weights.shape) + (num_dof if learn_goal else 0))) self.action_space = gym.spaces.Box(low=-action_bounds, high=action_bounds, dtype=np.float32) def initialize_mp(self, num_dof: int, duration: int, num_basis: int, alpha_phase: float = 2., bandwidth_factor: int = 3, **kwargs): phase_generator = ExpDecayPhaseGenerator(alpha_phase=alpha_phase, duration=duration) basis_generator = DMPBasisGenerator(phase_generator, duration=duration, num_basis=num_basis, basis_bandwidth_factor=bandwidth_factor) dmp = dmps.DMP(num_dof=num_dof, basis_generator=basis_generator, phase_generator=phase_generator, dt=self.dt) return dmp def goal_and_weights(self, params): assert params.shape[-1] == self.action_space.shape[0] params = np.atleast_2d(params) if self.learn_goal: goal_pos = params[0, -self.mp.num_dimensions:] # [num_dof] params = params[:, :-self.mp.num_dimensions] # [1,num_dof] else: goal_pos = self.env.goal_pos assert goal_pos is not None weight_matrix = np.reshape(params, self.mp.weights.shape) # [num_basis, num_dof] return goal_pos * self.goal_scale, weight_matrix * self.weights_scale def mp_rollout(self, action): self.mp.dmp_start_pos = self.env.start_pos goal_pos, weight_matrix = self.goal_and_weights(action) self.mp.set_weights(weight_matrix, goal_pos) return self.mp.reference_trajectory(self.t)