import os import gym import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np from gym import spaces from gym.utils import seeding from alr_envs.utils.utils import angle_normalize # if os.environ.get("DISPLAY", None): # mpl.use('Qt5Agg') class SimpleReacherEnv(gym.Env): """ Simple Reaching Task without any physics simulation. Returns no reward until 150 time steps. This allows the agent to explore the space, but requires precise actions towards the end of the trajectory. """ def __init__(self, n_links): super().__init__() self.link_lengths = np.ones(n_links) self.n_links = n_links self.dt = 0.1 self._goal_pos = None self._joints = None self._joint_angle = None self._angle_velocity = None self.max_torque = 1 # 10 self.steps_before_reward = 180 action_bound = np.ones((self.n_links,)) state_bound = np.hstack([ [np.pi] * self.n_links, # cos [np.pi] * self.n_links, # sin [np.inf] * self.n_links, # velocity [np.inf] * 2, # x-y coordinates of target distance [np.inf] # env steps, because reward start after n steps TODO: Maybe ]) self.action_space = spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape) self.observation_space = spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape) self.fig = None self.metadata = {'render.modes': ["human"]} self._steps = 0 self.seed() def step(self, action: np.ndarray): # action = self._add_action_noise(action) action = np.clip(action, -self.max_torque, self.max_torque) self._angle_velocity = self._angle_velocity + self.dt * action self._joint_angle = angle_normalize(self._joint_angle + self.dt * self._angle_velocity) self._update_joints() self._steps += 1 reward, info = self._get_reward(action) # done = np.abs(self.end_effector - self._goal_pos) < 0.1 done = False return self._get_obs().copy(), reward, done, info def _add_action_noise(self, action: np.ndarray): """ add unobserved Gaussian Noise N(0,0.01) to the actions Args: action: Returns: actions with noise """ return self.np_random.normal(0, 0.1, *action.shape) + action def _get_obs(self): theta = self._joint_angle return np.hstack([ np.cos(theta), np.sin(theta), self._angle_velocity, self.end_effector - self._goal_pos, self._steps ]) def _update_joints(self): """ update _joints to get new end effector position. The other links are only required for rendering. Returns: """ angles = np.cumsum(self._joint_angle) x = self.link_lengths * np.vstack([np.cos(angles), np.sin(angles)]) self._joints[1:] = self._joints[0] + np.cumsum(x.T, axis=0) def _get_reward(self, action: np.ndarray): diff = self.end_effector - self._goal_pos reward_dist = 0 # TODO: Is this the best option if self._steps >= self.steps_before_reward: reward_dist = - np.linalg.norm(diff) # reward_dist = np.exp(-0.1 * diff ** 2).mean() # reward_dist = - (diff ** 2).mean() reward_ctrl = (action ** 2).sum() reward = reward_dist - reward_ctrl return reward, dict(reward_dist=reward_dist, reward_ctrl=reward_ctrl) def reset(self): # TODO: maybe do initialisation more random? # Sample only orientation of first link, i.e. the arm is always straight. self._joint_angle = np.hstack([[self.np_random.uniform(-np.pi, np.pi)], np.zeros(self.n_links - 1)]) self._angle_velocity = np.zeros(self.n_links) self._joints = np.zeros((self.n_links + 1, 2)) self._update_joints() self._steps = 0 self._goal_pos = self._get_random_goal() return self._get_obs().copy() def _get_random_goal(self): center = self._joints[0] # Sample uniformly in circle with radius R around center of reacher. R = np.sum(self.link_lengths) r = R * np.sqrt(self.np_random.uniform()) theta = self.np_random.uniform() * 2 * np.pi return center + r * np.stack([np.cos(theta), np.sin(theta)]) def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def render(self, mode='human'): # pragma: no cover if self.fig is None: self.fig = plt.figure() plt.ion() plt.show() else: plt.figure(self.fig.number) plt.cla() plt.title(f"Iteration: {self._steps}, distance: {self.end_effector - self._goal_pos}") # Arm plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k') # goal goal_pos = self._goal_pos.T plt.plot(goal_pos[0], goal_pos[1], 'gx') # distance between end effector and goal plt.plot([self.end_effector[0], goal_pos[0]], [self.end_effector[1], goal_pos[1]], 'g--') lim = np.sum(self.link_lengths) + 0.5 plt.xlim([-lim, lim]) plt.ylim([-lim, lim]) # plt.draw() # plt.pause(1e-4) pushes window to foreground, which is annoying. self.fig.canvas.flush_events() def close(self): del self.fig @property def end_effector(self): return self._joints[self.n_links].T