from typing import Tuple, Union import numpy as np from mp_env_api.interface_wrappers.mp_env_wrapper import MPEnvWrapper class MPWrapper(MPEnvWrapper): @property def active_obs(self): # TODO: @Max Filter observations correctly return np.hstack([ [False] * 7, # cos [False] * 7, # sin # [True] * 2, # x-y coordinates of target distance [False] # env steps ]) @property def start_pos(self): return self._start_pos @property def current_pos(self) -> Union[float, int, np.ndarray, Tuple]: return self.sim.data.qpos[0:7].copy() @property def current_vel(self) -> Union[float, int, np.ndarray, Tuple]: return self.sim.data.qvel[0:7].copy() @property def goal_pos(self): # TODO: @Max I think the default value of returning to the start is reasonable here raise ValueError("Goal position is not available and has to be learnt based on the environment.") @property def dt(self) -> Union[float, int]: return self.env.dt