import os import numpy as np from gym import utils from gym.envs.mujoco import MujocoEnv import alr_envs.utils.utils as alr_utils class ALRReacherEnv(MujocoEnv, utils.EzPickle): def __init__(self, steps_before_reward: int = 200, n_links: int = 5, ctrl_cost_weight: int = 1, balance: bool = False): utils.EzPickle.__init__(**locals()) self._steps = 0 self.steps_before_reward = steps_before_reward self.n_links = n_links self.balance = balance self.balance_weight = 1.0 self.ctrl_cost_weight = ctrl_cost_weight self.reward_weight = 1 if steps_before_reward == 200: self.reward_weight = 200 elif steps_before_reward == 50: self.reward_weight = 50 if n_links == 5: file_name = 'reacher_5links.xml' elif n_links == 7: file_name = 'reacher_7links.xml' else: raise ValueError(f"Invalid number of links {n_links}, only 5 or 7 allowed.") MujocoEnv.__init__(self, os.path.join(os.path.dirname(__file__), "assets", file_name), 2) def step(self, a): self._steps += 1 reward_dist = 0.0 angular_vel = 0.0 reward_balance = 0.0 is_delayed = self.steps_before_reward > 0 reward_ctrl = - np.square(a).sum() * self.ctrl_cost_weight if self._steps >= self.steps_before_reward: vec = self.get_body_com("fingertip") - self.get_body_com("target") reward_dist -= self.reward_weight * np.linalg.norm(vec) if is_delayed: # avoid giving this penalty for normal step based case # angular_vel -= 10 * np.linalg.norm(self.sim.data.qvel.flat[:self.n_links]) angular_vel -= 10 * np.square(self.sim.data.qvel.flat[:self.n_links]).sum() # if is_delayed: # # Higher control penalty for sparse reward per timestep # reward_ctrl *= 10 if self.balance: reward_balance -= self.balance_weight * np.abs( alr_utils.angle_normalize(np.sum(self.sim.data.qpos.flat[:self.n_links]), type="rad")) reward = reward_dist + reward_ctrl + angular_vel + reward_balance self.do_simulation(a, self.frame_skip) ob = self._get_obs() done = False return ob, reward, done, dict(reward_dist=reward_dist, reward_ctrl=reward_ctrl, velocity=angular_vel, reward_balance=reward_balance, end_effector=self.get_body_com("fingertip").copy(), goal=self.goal if hasattr(self, "goal") else None) def viewer_setup(self): self.viewer.cam.trackbodyid = 0 # def reset_model(self): # qpos = self.init_qpos # if not hasattr(self, "goal"): # self.goal = np.array([-0.25, 0.25]) # # self.goal = self.init_qpos.copy()[:2] + 0.05 # qpos[-2:] = self.goal # qvel = self.init_qvel # qvel[-2:] = 0 # self.set_state(qpos, qvel) # self._steps = 0 # # return self._get_obs() def reset_model(self): qpos = self.init_qpos.copy() while True: # full space # self.goal = self.np_random.uniform(low=-self.n_links / 10, high=self.n_links / 10, size=2) # I Quadrant # self.goal = self.np_random.uniform(low=0, high=self.n_links / 10, size=2) # II Quadrant # self.goal = np.random.uniform(low=[-self.n_links / 10, 0], high=[0, self.n_links / 10], size=2) # II + III Quadrant # self.goal = np.random.uniform(low=-self.n_links / 10, high=[0, self.n_links / 10], size=2) # I + II Quadrant self.goal = np.random.uniform(low=[-self.n_links / 10, 0], high=self.n_links, size=2) if np.linalg.norm(self.goal) < self.n_links / 10: break qpos[-2:] = self.goal qvel = self.init_qvel.copy() qvel[-2:] = 0 self.set_state(qpos, qvel) self._steps = 0 return self._get_obs() # def reset_model(self): # qpos = self.np_random.uniform(low=-0.1, high=0.1, size=self.model.nq) + self.init_qpos # while True: # self.goal = self.np_random.uniform(low=-self.n_links / 10, high=self.n_links / 10, size=2) # if np.linalg.norm(self.goal) < self.n_links / 10: # break # qpos[-2:] = self.goal # qvel = self.init_qvel + self.np_random.uniform(low=-.005, high=.005, size=self.model.nv) # qvel[-2:] = 0 # self.set_state(qpos, qvel) # self._steps = 0 # # return self._get_obs() def _get_obs(self): theta = self.sim.data.qpos.flat[:self.n_links] target = self.get_body_com("target") return np.concatenate([ np.cos(theta), np.sin(theta), target[:2], # x-y of goal position self.sim.data.qvel.flat[:self.n_links], # angular velocity self.get_body_com("fingertip") - target, # goal distance [self._steps], ]) if __name__ == '__main__': nl = 5 render_mode = "human" # "human" or "partial" or "final" env = ALRReacherEnv(n_links=nl) obs = env.reset() for i in range(2000): # objective.load_result("/tmp/cma") # test with random actions ac = env.action_space.sample() obs, rew, d, info = env.step(ac) if i % 10 == 0: env.render(mode=render_mode) if d: env.reset() env.close()