import numpy as np from gym.envs.mujoco.ant_v3 import AntEnv MAX_EPISODE_STEPS_ANTJUMP = 200 # TODO: This environment was not testet yet. Do the following todos and test it. # TODO: Right now this environment only considers jumping to a specific height, which is not nice. It should be extended # to the same structure as the Hopper, where the angles are randomized (->contexts) and the agent should jump as heigh # as possible, while landing at a specific target position class ALRAntJumpEnv(AntEnv): """ Initialization changes to normal Ant: - healthy_reward: 1.0 -> 0.01 -> 0.0 no healthy reward needed - Paul and Marc - ctrl_cost_weight 0.5 -> 0.0 - contact_cost_weight: 5e-4 -> 0.0 - healthy_z_range: (0.2, 1.0) -> (0.3, float('inf')) !!!!! Does that make sense, limiting height? """ def __init__(self, xml_file='ant.xml', ctrl_cost_weight=0.0, contact_cost_weight=0.0, healthy_reward=0.0, terminate_when_unhealthy=True, healthy_z_range=(0.3, float('inf')), contact_force_range=(-1.0, 1.0), reset_noise_scale=0.1, exclude_current_positions_from_observation=True, max_episode_steps=200): self.current_step = 0 self.max_height = 0 self.max_episode_steps = max_episode_steps self.goal = 0 super().__init__(xml_file, ctrl_cost_weight, contact_cost_weight, healthy_reward, terminate_when_unhealthy, healthy_z_range, contact_force_range, reset_noise_scale, exclude_current_positions_from_observation) def step(self, action): self.current_step += 1 self.do_simulation(action, self.frame_skip) height = self.get_body_com("torso")[2].copy() self.max_height = max(height, self.max_height) rewards = 0 ctrl_cost = self.control_cost(action) contact_cost = self.contact_cost costs = ctrl_cost + contact_cost done = height < 0.3 # fall over -> is the 0.3 value from healthy_z_range? TODO change 0.3 to the value of healthy z angle if self.current_step == self.max_episode_steps or done: # -10 for scaling the value of the distance between the max_height and the goal height; only used when context is enabled # height_reward = -10 * (np.linalg.norm(self.max_height - self.goal)) height_reward = -10*np.linalg.norm(self.max_height - self.goal) # no healthy reward when using context, because we optimize a negative value healthy_reward = 0 rewards = height_reward + healthy_reward obs = self._get_obs() reward = rewards - costs info = { 'height': height, 'max_height': self.max_height, 'goal': self.goal } return obs, reward, done, info def _get_obs(self): return np.append(super()._get_obs(), self.goal) def reset(self): self.current_step = 0 self.max_height = 0 self.goal = np.random.uniform(1.0, 2.5, 1) # goal heights from 1.0 to 2.5; can be increased, but didnt work well with CMORE return super().reset() # reset_model had to be implemented in every env to make it deterministic def reset_model(self): noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos # + self.np_random.uniform(low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel # + self.np_random.uniform(low=noise_low, high=noise_high, size=self.model.nv) self.set_state(qpos, qvel) observation = self._get_obs() return observation if __name__ == '__main__': render_mode = "human" # "human" or "partial" or "final" env = ALRAntJumpEnv() obs = env.reset() for i in range(2000): # test with random actions ac = env.action_space.sample() obs, rew, d, info = env.step(ac) if i % 10 == 0: env.render(mode=render_mode) if d: env.reset() env.close()