import os import numpy as np from gym import utils from gym.envs.mujoco import mujoco_env from alr_envs.utils.utils import angle_normalize class ALRReacherEnv(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, steps_before_reward=200, n_links=5, balance=True, file_name=None): utils.EzPickle.__init__(**locals()) self._steps = 0 self.steps_before_reward = steps_before_reward self.n_links = n_links self.balance = balance self.balance_weight = 0.5 self.reward_weight = 1 if steps_before_reward == 200: self.reward_weight = 200 elif steps_before_reward == 50: self.reward_weight = 50 if n_links == 5: file_name = 'reacher_5links.xml' elif n_links == 7: file_name = 'reacher_7links.xml' else: raise ValueError(f"Invalid number of links {n_links}, only 5 or 7 allowed.") mujoco_env.MujocoEnv.__init__(self, os.path.join(os.path.dirname(__file__), "assets", file_name), 2) def step(self, a): self._steps += 1 reward_dist = 0.0 angular_vel = 0.0 reward_balance = 0.0 if self._steps >= self.steps_before_reward: vec = self.get_body_com("fingertip") - self.get_body_com("target") reward_dist -= self.reward_weight * np.linalg.norm(vec) angular_vel -= np.linalg.norm(self.sim.data.qvel.flat[:self.n_links]) reward_ctrl = - np.square(a).sum() if self.balance: reward_balance -= self.balance_weight * np.abs( angle_normalize(np.sum(self.sim.data.qpos.flat[:self.n_links]), type="rad")) reward = reward_dist + reward_ctrl + angular_vel + reward_balance self.do_simulation(a, self.frame_skip) ob = self._get_obs() done = False return ob, reward, done, dict(reward_dist=reward_dist, reward_ctrl=reward_ctrl, velocity=angular_vel, reward_balance=reward_balance, end_effector=self.get_body_com("fingertip").copy(), goal=self.goal if hasattr(self, "goal") else None) def viewer_setup(self): self.viewer.cam.trackbodyid = 1 def reset_model(self): qpos = self.np_random.uniform(low=-0.1, high=0.1, size=self.model.nq) + self.init_qpos while True: self.goal = self.np_random.uniform(low=-self.n_links / 10, high=self.n_links / 10, size=2) if np.linalg.norm(self.goal) < self.n_links / 10: break qpos[-2:] = self.goal qvel = self.init_qvel + self.np_random.uniform(low=-.005, high=.005, size=self.model.nv) qvel[-2:] = 0 self.set_state(qpos, qvel) self._steps = 0 return self._get_obs() def _get_obs(self): theta = self.sim.data.qpos.flat[:self.n_links] return np.concatenate([ np.cos(theta), np.sin(theta), self.sim.data.qpos.flat[self.n_links:], # this is goal position self.sim.data.qvel.flat[:self.n_links], # this is angular velocity self.get_body_com("fingertip") - self.get_body_com("target"), # self.get_body_com("target"), # only return target to make problem harder [self._steps], ])