import os import numpy as np from gym import utils from gym.envs.mujoco import mujoco_env import alr_envs.utils.utils as alr_utils class BalancingEnv(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, n_links=5): utils.EzPickle.__init__(**locals()) self.n_links = n_links if n_links == 5: file_name = 'reacher_5links.xml' elif n_links == 7: file_name = 'reacher_7links.xml' else: raise ValueError(f"Invalid number of links {n_links}, only 5 or 7 allowed.") mujoco_env.MujocoEnv.__init__(self, os.path.join(os.path.dirname(__file__), "assets", file_name), 2) def step(self, a): angle = alr_utils.angle_normalize(np.sum(self.sim.data.qpos.flat[:self.n_links]), type="rad") reward = - np.abs(angle) self.do_simulation(a, self.frame_skip) ob = self._get_obs() done = False return ob, reward, done, dict(angle=angle, end_effector=self.get_body_com("fingertip").copy()) def viewer_setup(self): self.viewer.cam.trackbodyid = 1 def reset_model(self): # This also generates a goal, we however do not need/use it qpos = self.np_random.uniform(low=-0.1, high=0.1, size=self.model.nq) + self.init_qpos qpos[-2:] = 0 qvel = self.init_qvel + self.np_random.uniform(low=-.005, high=.005, size=self.model.nv) qvel[-2:] = 0 self.set_state(qpos, qvel) return self._get_obs() def _get_obs(self): theta = self.sim.data.qpos.flat[:self.n_links] return np.concatenate([ np.cos(theta), np.sin(theta), self.sim.data.qvel.flat[:self.n_links], # this is angular velocity ])