from abc import ABC, abstractmethod import gym import numpy as np from alr_envs.utils.mps.mp_environments import AlrEnv from alr_envs.utils.policies import get_policy_class class MPWrapper(gym.Wrapper, ABC): def __init__(self, env: AlrEnv, num_dof: int, dt: float, duration: float = 1, post_traj_time: float = 0., policy_type: str = None, weights_scale: float = 1., render_mode: str = None, **mp_kwargs): super().__init__(env) # adjust observation space to reduce version obs_sp = self.env.observation_space self.observation_space = gym.spaces.Box(low=obs_sp.low[self.env.active_obs], high=obs_sp.high[self.env.active_obs], dtype=obs_sp.dtype) assert dt is not None # this should never happen as MPWrapper is a base class self.post_traj_steps = int(post_traj_time / dt) self.mp = self.initialize_mp(num_dof, duration, dt, **mp_kwargs) self.weights_scale = weights_scale policy_class = get_policy_class(policy_type) self.policy = policy_class(env) # rendering self.render_mode = render_mode self.render_kwargs = {} # TODO: @Max I think this should not be in this class, this functionality should be part of your sampler. def __call__(self, params, contexts=None): """ Can be used to provide a batch of parameter sets """ params = np.atleast_2d(params) obs = [] rewards = [] dones = [] infos = [] # for p, c in zip(params, contexts): for p in params: # self.configure(c) ob, reward, done, info = self.step(p) obs.append(ob) rewards.append(reward) dones.append(done) infos.append(info) return obs, np.array(rewards), dones, infos def reset(self): return self.env.reset()[self.env.active_obs] def step(self, action: np.ndarray): """ This function generates a trajectory based on a DMP and then does the usual loop over reset and step""" trajectory, velocity = self.mp_rollout(action) if self.post_traj_steps > 0: trajectory = np.vstack([trajectory, np.tile(trajectory[-1, :], [self.post_traj_steps, 1])]) velocity = np.vstack([velocity, np.zeros(shape=(self.post_traj_steps, self.mp.n_dof))]) # self._trajectory = trajectory # self._velocity = velocity rewards = 0 info = {} # create random obs as the reset function is called externally obs = self.env.observation_space.sample() for t, pos_vel in enumerate(zip(trajectory, velocity)): ac = self.policy.get_action(pos_vel[0], pos_vel[1]) obs, rew, done, info = self.env.step(ac) rewards += rew # TODO return all dicts? # [infos[k].append(v) for k, v in info.items()] if self.render_mode: self.env.render(mode=self.render_mode, **self.render_kwargs) if done: break done = True return obs[self.env.active_obs], rewards, done, info def render(self, mode='human', **kwargs): """Only set render options here, such that they can be used during the rollout. This only needs to be called once""" self.render_mode = mode self.render_kwargs = kwargs @abstractmethod def mp_rollout(self, action): """ Generate trajectory and velocity based on the MP Returns: trajectory/positions, velocity """ raise NotImplementedError() @abstractmethod def initialize_mp(self, num_dof: int, duration: float, dt: float, **kwargs): """ Create respective instance of MP Returns: MP instance """ raise NotImplementedError