from typing import Iterable, Union import gym import matplotlib.pyplot as plt import numpy as np from gym.utils import seeding from alr_envs.classic_control.utils import check_self_collision from alr_envs.utils.mps.mp_environments import MPEnv class ViaPointReacher(MPEnv): def __init__(self, n_links, random_start: bool = True, via_target: Union[None, Iterable] = None, target: Union[None, Iterable] = None, allow_self_collision=False, collision_penalty=1000): self.n_links = n_links self.link_lengths = np.ones((n_links, 1)) self.random_start = random_start # provided initial parameters self._target = target # provided target value self._via_target = via_target # provided via point target value # temp container for current env state self._via_point = np.ones(2) self._goal = np.array((n_links, 0)) # collision self.allow_self_collision = allow_self_collision self.collision_penalty = collision_penalty # state self._joints = None self._joint_angles = None self._angle_velocity = None self._start_pos = np.hstack([[np.pi / 2], np.zeros(self.n_links - 1)]) self._start_vel = np.zeros(self.n_links) self.weight_matrix_scale = 1 self.dt = 0.01 action_bound = np.pi * np.ones((self.n_links,)) state_bound = np.hstack([ [np.pi] * self.n_links, # cos [np.pi] * self.n_links, # sin [np.inf] * self.n_links, # velocity [np.inf] * 2, # x-y coordinates of via point distance [np.inf] * 2, # x-y coordinates of target distance [np.inf] # env steps, because reward start after n steps ]) self.action_space = gym.spaces.Box(low=-action_bound, high=action_bound, shape=action_bound.shape) self.observation_space = gym.spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape) # containers for plotting self.metadata = {'render.modes': ["human", "partial"]} self.fig = None self._steps = 0 self.seed() def step(self, action: np.ndarray): """ a single step with an action in joint velocity space """ vel = action self._angle_velocity = vel self._joint_angles = self._joint_angles + self.dt * self._angle_velocity self._update_joints() acc = (vel - self._angle_velocity) / self.dt reward, info = self._get_reward(acc) info.update({"is_collided": self._is_collided}) self._steps += 1 done = self._is_collided return self._get_obs().copy(), reward, done, info def reset(self): if self.random_start: # Maybe change more than dirst seed first_joint = self.np_random.uniform(np.pi / 4, 3 * np.pi / 4) self._joint_angles = np.hstack([[first_joint], np.zeros(self.n_links - 1)]) self._start_pos = self._joint_angles.copy() else: self._joint_angles = self._start_pos self._generate_goal() self._angle_velocity = self._start_vel self._joints = np.zeros((self.n_links + 1, 2)) self._update_joints() self._steps = 0 return self._get_obs().copy() def _generate_goal(self): # TODO: Maybe improve this later, this can yield quite a lot of invalid settings total_length = np.sum(self.link_lengths) # rejection sampled point in inner circle with 0.5*Radius if self._via_target is None: via_target = np.array([total_length, total_length]) while np.linalg.norm(via_target) >= 0.5 * total_length: via_target = self.np_random.uniform(low=-0.5 * total_length, high=0.5 * total_length, size=2) else: via_target = np.copy(self._via_target) # rejection sampled point in outer circle if self._target is None: goal = np.array([total_length, total_length]) while np.linalg.norm(goal) >= total_length or np.linalg.norm(goal) <= 0.5 * total_length: goal = self.np_random.uniform(low=-total_length, high=total_length, size=2) else: goal = np.copy(self._target) self._via_target = via_target self._goal = goal def _update_joints(self): """ update _joints to get new end effector position. The other links are only required for rendering. Returns: """ line_points_in_taskspace = self.get_forward_kinematics(num_points_per_link=20) self._joints[1:, 0] = self._joints[0, 0] + line_points_in_taskspace[:, -1, 0] self._joints[1:, 1] = self._joints[0, 1] + line_points_in_taskspace[:, -1, 1] self_collision = False if not self.allow_self_collision: self_collision = check_self_collision(line_points_in_taskspace) if np.any(np.abs(self._joint_angles) > np.pi): self_collision = True self._is_collided = self_collision def _get_reward(self, acc): success = False reward = -np.inf if not self._is_collided: dist = np.inf # return intermediate reward for via point if self._steps == 100: dist = np.linalg.norm(self.end_effector - self._via_point) # return reward in last time step for goal elif self._steps == 199: dist = np.linalg.norm(self.end_effector - self._goal) success = dist < 0.005 else: # Episode terminates when colliding, hence return reward dist = np.linalg.norm(self.end_effector - self._goal) reward = -self.collision_penalty reward -= dist ** 2 reward -= 5e-8 * np.sum(acc ** 2) info = {"is_success": success} return reward, info def _get_obs(self): theta = self._joint_angles return np.hstack([ np.cos(theta), np.sin(theta), self._angle_velocity, self.end_effector - self._via_point, self.end_effector - self._goal, self._steps ]) def get_forward_kinematics(self, num_points_per_link=1): theta = self._joint_angles[:, None] intermediate_points = np.linspace(0, 1, num_points_per_link) if num_points_per_link > 1 else 1 accumulated_theta = np.cumsum(theta, axis=0) endeffector = np.zeros(shape=(self.n_links, num_points_per_link, 2)) x = np.cos(accumulated_theta) * self.link_lengths * intermediate_points y = np.sin(accumulated_theta) * self.link_lengths * intermediate_points endeffector[0, :, 0] = x[0, :] endeffector[0, :, 1] = y[0, :] for i in range(1, self.n_links): endeffector[i, :, 0] = x[i, :] + endeffector[i - 1, -1, 0] endeffector[i, :, 1] = y[i, :] + endeffector[i - 1, -1, 1] return np.squeeze(endeffector + self._joints[0, :]) def render(self, mode='human'): goal_pos = self._goal.T via_pos = self._via_point.T if self.fig is None: # Create base figure once on the beginning. Afterwards only update plt.ion() self.fig = plt.figure() ax = self.fig.add_subplot(1, 1, 1) # limits lim = np.sum(self.link_lengths) + 0.5 ax.set_xlim([-lim, lim]) ax.set_ylim([-lim, lim]) self.line, = ax.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k') self.goal_point_plot, = ax.plot(goal_pos[0], goal_pos[1], 'go') self.via_point_plot, = ax.plot(via_pos[0], via_pos[1], 'gx') self.fig.show() self.fig.gca().set_title(f"Iteration: {self._steps}, distance: {self.end_effector - self._goal}") if mode == "human": # goal if self._steps == 1: self.goal_point_plot.set_data(goal_pos[0], goal_pos[1]) self.via_point_plot.set_data(via_pos[0], goal_pos[1]) # arm self.line.set_data(self._joints[:, 0], self._joints[:, 1]) self.fig.canvas.draw() self.fig.canvas.flush_events() elif mode == "partial": if self._steps == 1: # fig, ax = plt.subplots() # Add the patch to the Axes [plt.gca().add_patch(rect) for rect in self.patches] # plt.pause(0.01) if self._steps % 20 == 0 or self._steps in [1, 199] or self._is_collided: # Arm plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k', alpha=self._steps / 200) # ax.plot(line_points_in_taskspace[:, 0, 0], # line_points_in_taskspace[:, 0, 1], # line_points_in_taskspace[:, -1, 0], # line_points_in_taskspace[:, -1, 1], marker='o', color='k', alpha=t / 200) lim = np.sum(self.link_lengths) + 0.5 plt.xlim([-lim, lim]) plt.ylim([-1.1, lim]) plt.pause(0.01) elif mode == "final": if self._steps == 199 or self._is_collided: # fig, ax = plt.subplots() # Add the patch to the Axes [plt.gca().add_patch(rect) for rect in self.patches] plt.xlim(-self.n_links, self.n_links), plt.ylim(-1, self.n_links) # Arm plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k') plt.pause(0.01) @property def active_obs(self): return np.hstack([ [self.random_start] * self.n_links, # cos [self.random_start] * self.n_links, # sin [self.random_start] * self.n_links, # velocity [self._via_target is None] * 2, # x-y coordinates of via point distance [True] * 2, # x-y coordinates of target distance [False] # env steps ]) @property def start_pos(self) -> Union[float, int, np.ndarray]: return self._start_pos @property def goal_pos(self) -> Union[float, int, np.ndarray]: raise ValueError("Goal position is not available and has to be learnt based on the environment.") def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] @property def end_effector(self): return self._joints[self.n_links].T def close(self): if self.fig is not None: plt.close(self.fig) if __name__ == '__main__': nl = 5 render_mode = "human" # "human" or "partial" or "final" env = ViaPointReacher(n_links=nl, allow_self_collision=False) env.reset() env.render(mode=render_mode) for i in range(300): # objective.load_result("/tmp/cma") # test with random actions ac = env.action_space.sample() # ac[0] += np.pi/2 obs, rew, d, info = env.step(ac) env.render(mode=render_mode) print(rew) if d: break env.close()