from gym.envs.mujoco.hopper_v3 import HopperEnv import numpy as np MAX_EPISODE_STEPS_HOPPERJUMP = 250 class ALRHopperJumpEnv(HopperEnv): """ Initialization changes to normal Hopper: - healthy_reward: 1.0 -> 0.1 -> 0 - healthy_angle_range: (-0.2, 0.2) -> (-float('inf'), float('inf')) - healthy_z_range: (0.7, float('inf')) -> (0.5, float('inf')) """ def __init__(self, xml_file='hopper.xml', forward_reward_weight=1.0, ctrl_cost_weight=1e-3, healthy_reward=0.0, penalty=0.0, context=True, terminate_when_unhealthy=True, healthy_state_range=(-100.0, 100.0), healthy_z_range=(0.5, float('inf')), healthy_angle_range=(-float('inf'), float('inf')), reset_noise_scale=5e-3, exclude_current_positions_from_observation=True, max_episode_steps=250): self.current_step = 0 self.max_height = 0 self.max_episode_steps = max_episode_steps self.penalty = penalty self.goal = 0 self.context = context self.exclude_current_positions_from_observation = exclude_current_positions_from_observation super().__init__(xml_file, forward_reward_weight, ctrl_cost_weight, healthy_reward, terminate_when_unhealthy, healthy_state_range, healthy_z_range, healthy_angle_range, reset_noise_scale, exclude_current_positions_from_observation) def step(self, action): self.current_step += 1 self.do_simulation(action, self.frame_skip) height_after = self.get_body_com("torso")[2] self.max_height = max(height_after, self.max_height) ctrl_cost = self.control_cost(action) costs = ctrl_cost done = False if self.current_step >= self.max_episode_steps: hight_goal_distance = -10*np.linalg.norm(self.max_height - self.goal) if self.context else self.max_height healthy_reward = 0 if self.context else self.healthy_reward * self.current_step height_reward = self._forward_reward_weight * hight_goal_distance # maybe move reward calculation into if structure and define two different _forward_reward_weight variables for context and episodic seperatley rewards = height_reward + healthy_reward else: # penalty for wrong start direction of first two joints; not needed, could be removed rewards = ((action[:2] > 0) * self.penalty).sum() if self.current_step < 10 else 0 observation = self._get_obs() reward = rewards - costs info = { 'height' : height_after, 'max_height': self.max_height, 'goal' : self.goal } return observation, reward, done, info def _get_obs(self): return np.append(super()._get_obs(), self.goal) def reset(self): self.goal = np.random.uniform(1.4, 2.3, 1) # 1.3 2.3 self.max_height = 0 self.current_step = 0 return super().reset() # overwrite reset_model to make it deterministic def reset_model(self): noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos # + self.np_random.uniform(low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel # + self.np_random.uniform(low=noise_low, high=noise_high, size=self.model.nv) self.set_state(qpos, qvel) observation = self._get_obs() return observation class ALRHopperJumpRndmPosEnv(ALRHopperJumpEnv): def __init__(self, max_episode_steps=250): super(ALRHopperJumpRndmPosEnv, self).__init__(exclude_current_positions_from_observation=False, reset_noise_scale=5e-1, max_episode_steps=max_episode_steps) def reset_model(self): noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform(low=noise_low, high=noise_high, size=self.model.nq) qvel = self.init_qvel #+ self.np_random.uniform(low=noise_low, high=noise_high, size=self.model.nv) self.set_state(qpos, qvel) observation = self._get_obs() return observation def step(self, action): self.current_step += 1 self.do_simulation(action, self.frame_skip) height_after = self.get_body_com("torso")[2] self.max_height = max(height_after, self.max_height) ctrl_cost = self.control_cost(action) costs = ctrl_cost done = False if self.current_step >= self.max_episode_steps: healthy_reward = 0 height_reward = self._forward_reward_weight * self.max_height # maybe move reward calculation into if structure and define two different _forward_reward_weight variables for context and episodic seperatley rewards = height_reward + healthy_reward else: # penalty for wrong start direction of first two joints; not needed, could be removed rewards = ((action[:2] > 0) * self.penalty).sum() if self.current_step < 10 else 0 observation = self._get_obs() reward = rewards - costs info = { 'height': height_after, 'max_height': self.max_height, 'goal': self.goal } return observation, reward, done, info if __name__ == '__main__': render_mode = "human" # "human" or "partial" or "final" env = ALRHopperJumpEnv() obs = env.reset() for i in range(2000): # objective.load_result("/tmp/cma") # test with random actions ac = env.action_space.sample() obs, rew, d, info = env.step(ac) if i % 10 == 0: env.render(mode=render_mode) if d: print('After ', i, ' steps, done: ', d) env.reset() env.close()