## ALR Custom Environments This repository collects custom RL envs not included in Suits like OpenAI gym, rllab, etc. Creating a custom (Mujoco) gym environement can be done according to this guide: https://github.com/openai/gym/blob/master/docs/creating-environments.md ## Environments Currently we have the following environements: ### Mujoco |Name| Description| |---|---| |`ALRReacher-v0`|modification (5 links) of Mujoco Gym's Reacher (2 links)| ### Classic Control |Name| Description| |---|---| |`SimpleReacher-v0`| Simple Reaching Task without any physics simulation. Returns no reward until 150 time steps. This allows the agent to explore the space, but requires precise actions towards the end of the trajectory.| ## INSTALL 1. Clone the repository ```bash git clone git@github.com:ALRhub/alr_envs.git ``` 2. Go to the folder ```bash cd alr_envs ``` 3. Install with ```bash pip install -e . ``` 4. Use (see [example.py](./example.py)): ```python import gym env = gym.make('alr_envs:SimpleReacher-v0') state = env.reset() for i in range(10000): state, reward, done, info = env.step(env.action_space.sample()) if i % 5 == 0: env.render() if done: state = env.reset() ```