from typing import Tuple, Union import numpy as np from mp_env_api import MPEnvWrapper class MPWrapper(MPEnvWrapper): @property def active_obs(self): # Joint and target positions are randomized, velocities are always set to 0. return np.hstack([ [True] * 2, # joint position [True] * 2, # target position [False] * 2, # joint velocity ]) @property def current_pos(self) -> Union[float, int, np.ndarray]: return self.env.physics.named.data.qpos[:] @property def current_vel(self) -> Union[float, int, np.ndarray, Tuple]: return self.env.physics.named.data.qvel[:] @property def goal_pos(self) -> Union[float, int, np.ndarray, Tuple]: raise ValueError("Goal position is not available and has to be learnt based on the environment.") @property def dt(self) -> Union[float, int]: return self.env.dt