import numpy as np import os from gym import utils from gym.envs.mujoco import mujoco_env class ALRReacherEnv(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self): utils.EzPickle.__init__(self) mujoco_env.MujocoEnv.__init__(self, os.path.join(os.path.dirname(__file__), "assets", 'reacher_5links.xml'), 2) def step(self, a): vec = self.get_body_com("fingertip") - self.get_body_com("target") reward_dist = - np.linalg.norm(vec) reward_ctrl = - np.square(a).sum() reward = reward_dist + reward_ctrl self.do_simulation(a, self.frame_skip) ob = self._get_obs() done = False return ob, reward, done, dict(reward_dist=reward_dist, reward_ctrl=reward_ctrl) def viewer_setup(self): self.viewer.cam.trackbodyid = 0 def reset_model(self): qpos = self.np_random.uniform(low=-0.1, high=0.1, size=self.model.nq) + self.init_qpos while True: self.goal = self.np_random.uniform(low=-.2, high=.2, size=2) if np.linalg.norm(self.goal) < 0.2: break qpos[-2:] = self.goal qvel = self.init_qvel + self.np_random.uniform(low=-.005, high=.005, size=self.model.nv) qvel[-2:] = 0 self.set_state(qpos, qvel) return self._get_obs() def _get_obs(self): theta = self.sim.data.qpos.flat[:5] return np.concatenate([ np.cos(theta), np.sin(theta), self.sim.data.qpos.flat[5:], # this is goal position self.sim.data.qvel.flat[:5], # this is angular velocity self.get_body_com("fingertip") - self.get_body_com("target") ])