from typing import Tuple, Union import numpy as np from alr_envs.black_box.raw_interface_wrapper import RawInterfaceWrapper class MPWrapper(RawInterfaceWrapper): @property def context_mask(self) -> np.ndarray: return np.hstack([ [False] * 111, # ant has 111 dimensional observation space !! [True] # goal height ]) @property def current_pos(self) -> Union[float, int, np.ndarray]: return self.env.sim.data.qpos[7:15].copy() @property def current_vel(self) -> Union[float, int, np.ndarray, Tuple]: return self.env.sim.data.qvel[6:14].copy() @property def goal_pos(self) -> Union[float, int, np.ndarray, Tuple]: raise ValueError("Goal position is not available and has to be learnt based on the environment.") @property def dt(self) -> Union[float, int]: return self.env.dt