from typing import Union, Tuple from mp_pytorch.mp.mp_interfaces import MPInterface from abc import abstractmethod import gym import numpy as np class RawInterfaceWrapper(gym.Wrapper): @property @abstractmethod def context_mask(self) -> np.ndarray: """ This function defines the contexts. The contexts are defined as specific observations. Returns: bool array representing the indices of the observations """ return np.ones(self.env.observation_space.shape[0], dtype=bool) @property @abstractmethod def current_pos(self) -> Union[float, int, np.ndarray, Tuple]: """ Returns the current position of the action/control dimension. The dimensionality has to match the action/control dimension. This is not required when exclusively using velocity control, it should, however, be implemented regardless. E.g. The joint positions that are directly or indirectly controlled by the action. """ raise NotImplementedError() @property @abstractmethod def current_vel(self) -> Union[float, int, np.ndarray, Tuple]: """ Returns the current velocity of the action/control dimension. The dimensionality has to match the action/control dimension. This is not required when exclusively using position control, it should, however, be implemented regardless. E.g. The joint velocities that are directly or indirectly controlled by the action. """ raise NotImplementedError() @property def dt(self) -> float: """ Control frequency of the environment Returns: float """ return self.env.dt def do_replanning(self, pos, vel, s, a, t): # return t % 100 == 0 # return bool(self.replanning_model(s)) return False def _episode_callback(self, action: np.ndarray, traj_gen: MPInterface) -> Tuple[np.ndarray, Union[np.ndarray, None]]: """ Used to extract the parameters for the motion primitive and other parameters from an action array which might include other actions like ball releasing time for the beer pong environment. This only needs to be overwritten if the action space is modified. Args: action: a vector instance of the whole action space, includes traj_gen parameters and additional parameters if specified, else only traj_gen parameters Returns: Tuple: mp_arguments and other arguments """ return action, None def _step_callback(self, t: int, env_spec_params: Union[np.ndarray, None], step_action: np.ndarray) -> Union[ np.ndarray]: """ This function can be used to modify the step_action with additional parameters e.g. releasing the ball in the Beerpong env. The parameters used should not be part of the motion primitive parameters. Returns step_action by default, can be overwritten in individual mp_wrappers. Args: t: the current time step of the episode env_spec_params: the environment specific parameter, as defined in function _episode_callback (e.g. ball release time in Beer Pong) step_action: the current step-based action Returns: modified step action """ return step_action