import unittest import gym import numpy as np from dm_control import suite, manipulation from alr_envs import make DMC_ENVS = [f'{env}-{task}' for env, task in suite.ALL_TASKS if env != "lqr"] MANIPULATION_SPECS = [f'manipulation-{task}' for task in manipulation.ALL if task.endswith('_features')] SEED = 1 class TestStepDMCEnvironments(unittest.TestCase): def _run_env(self, env_id, iterations=None, seed=SEED, render=False): """ Example for running a DMC based env in the step based setting. The env_id has to be specified as `domain_name-task_name` or for manipulation tasks as `manipulation-environment_name` Args: env_id: Either `domain_name-task_name` or `manipulation-environment_name` iterations: Number of rollout steps to run seed= random seeding render: Render the episode Returns: """ env: gym.Env = make(env_id, seed=seed) rewards = [] observations = [] dones = [] obs = env.reset() self._verify_observations(obs, env.observation_space, "reset()") iterations = iterations or (env.spec.max_episode_steps or 1) # number of samples(multiple environment steps) for i in range(iterations): observations.append(obs) ac = env.action_space.sample() # ac = np.random.uniform(env.action_space.low, env.action_space.high, env.action_space.shape) obs, reward, done, info = env.step(ac) self._verify_observations(obs, env.observation_space, "step()") self._verify_reward(reward) self._verify_done(done) rewards.append(reward) dones.append(done) if render: env.render("human") if done: obs = env.reset() assert done, "Done flag is not True after max episode length." observations.append(obs) env.close() del env return np.array(observations), np.array(rewards), np.array(dones) def _verify_observations(self, obs, observation_space, obs_type="reset()"): self.assertTrue(observation_space.contains(obs), f"Observation {obs} received from {obs_type} " f"not contained in observation space {observation_space}.") def _verify_reward(self, reward): self.assertIsInstance(reward, float, f"Returned {reward} as reward, expected float.") def _verify_done(self, done): self.assertIsInstance(done, bool, f"Returned {done} as done flag, expected bool.") def test_dmc_functionality(self): """Tests that environments runs without errors using random actions.""" for env_id in DMC_ENVS: with self.subTest(msg=env_id): self._run_env(env_id) def test_dmc_determinism(self): """Tests that identical seeds produce identical trajectories.""" seed = 0 # Iterate over two trajectories, which should have the same state and action sequence for env_id in DMC_ENVS: with self.subTest(msg=env_id): traj1 = self._run_env(env_id, seed=seed) traj2 = self._run_env(env_id, seed=seed) for i, time_step in enumerate(zip(*traj1, *traj2)): obs1, rwd1, done1, obs2, rwd2, done2 = time_step self.assertTrue(np.array_equal(obs1, obs2), f"Observations [{i}] {obs1} and {obs2} do not match.") self.assertEqual(rwd1, rwd2, f"Rewards [{i}] {rwd1} and {rwd2} do not match.") self.assertEqual(done1, done2, f"Dones [{i}] {done1} and {done2} do not match.") def test_manipulation_functionality(self): """Tests that environments runs without errors using random actions.""" for env_id in MANIPULATION_SPECS: with self.subTest(msg=env_id): self._run_env(env_id) def test_manipulation_determinism(self): """Tests that identical seeds produce identical trajectories.""" seed = 0 # Iterate over two trajectories, which should have the same state and action sequence for env_id in MANIPULATION_SPECS: with self.subTest(msg=env_id): traj1 = self._run_env(env_id, seed=seed) traj2 = self._run_env(env_id, seed=seed) for i, time_step in enumerate(zip(*traj1, *traj2)): obs1, rwd1, done1, obs2, rwd2, done2 = time_step self.assertTrue(np.array_equal(obs1, obs2), f"Observations [{i}] {obs1} and {obs2} do not match.") self.assertEqual(rwd1, rwd2, f"Rewards [{i}] {rwd1} and {rwd2} do not match.") self.assertEqual(done1, done2, f"Dones [{i}] {done1} and {done2} do not match.") self.assertEqual(done1, done2, f"Dones [{i}] {done1} and {done2} do not match.") if __name__ == '__main__': unittest.main()