fancy_gym/alr_envs/envs/mujoco/hopper_throw/hopper_throw.py
2022-07-12 15:17:02 +02:00

116 lines
4.2 KiB
Python

import os
from typing import Optional
from gym.envs.mujoco.hopper_v3 import HopperEnv
import numpy as np
MAX_EPISODE_STEPS_HOPPERTHROW = 250
class ALRHopperThrowEnv(HopperEnv):
"""
Initialization changes to normal Hopper:
- healthy_reward: 1.0 -> 0.0 -> 0.1
- forward_reward_weight -> 5.0
- healthy_angle_range: (-0.2, 0.2) -> (-float('inf'), float('inf'))
Reward changes to normal Hopper:
- velocity: (x_position_after - x_position_before) -> self.get_body_com("ball")[0]
"""
def __init__(self,
xml_file='hopper_throw.xml',
forward_reward_weight=5.0,
ctrl_cost_weight=1e-3,
healthy_reward=0.1,
terminate_when_unhealthy=True,
healthy_state_range=(-100.0, 100.0),
healthy_z_range=(0.7, float('inf')),
healthy_angle_range=(-float('inf'), float('inf')),
reset_noise_scale=5e-3,
context=True,
exclude_current_positions_from_observation=True,
max_episode_steps=250):
xml_file = os.path.join(os.path.dirname(__file__), "assets", xml_file)
self.current_step = 0
self.max_episode_steps = max_episode_steps
self.context = context
self.goal = 0
super().__init__(xml_file, forward_reward_weight, ctrl_cost_weight, healthy_reward, terminate_when_unhealthy,
healthy_state_range, healthy_z_range, healthy_angle_range, reset_noise_scale,
exclude_current_positions_from_observation)
def step(self, action):
self.current_step += 1
self.do_simulation(action, self.frame_skip)
ball_pos_after = self.get_body_com("ball")[
0] # abs(self.get_body_com("ball")[0]) # use x and y to get point and use euclid distance as reward?
ball_pos_after_y = self.get_body_com("ball")[2]
# done = self.done TODO We should use this, not sure why there is no other termination; ball_landed should be enough, because we only look at the throw itself? - Paul and Marc
ball_landed = bool(self.get_body_com("ball")[2] <= 0.05)
done = ball_landed
ctrl_cost = self.control_cost(action)
costs = ctrl_cost
rewards = 0
if self.current_step >= self.max_episode_steps or done:
distance_reward = -np.linalg.norm(ball_pos_after - self.goal) if self.context else \
self._forward_reward_weight * ball_pos_after
healthy_reward = 0 if self.context else self.healthy_reward * self.current_step
rewards = distance_reward + healthy_reward
observation = self._get_obs()
reward = rewards - costs
info = {
'ball_pos': ball_pos_after,
'ball_pos_y': ball_pos_after_y,
'_steps': self.current_step,
'goal': self.goal,
}
return observation, reward, done, info
def _get_obs(self):
return np.append(super()._get_obs(), self.goal)
def reset(self, *, seed: Optional[int] = None, return_info: bool = False, options: Optional[dict] = None):
self.current_step = 0
self.goal = self.goal = self.np_random.uniform(2.0, 6.0, 1) # 0.5 8.0
return super().reset()
# overwrite reset_model to make it deterministic
def reset_model(self):
noise_low = -self._reset_noise_scale
noise_high = self._reset_noise_scale
qpos = self.init_qpos # + self.np_random.uniform(low=noise_low, high=noise_high, size=self.model.nq)
qvel = self.init_qvel # + self.np_random.uniform(low=noise_low, high=noise_high, size=self.model.nv)
self.set_state(qpos, qvel)
observation = self._get_obs()
return observation
if __name__ == '__main__':
render_mode = "human" # "human" or "partial" or "final"
env = ALRHopperThrowEnv()
obs = env.reset()
for i in range(2000):
# objective.load_result("/tmp/cma")
# test with random actions
ac = env.action_space.sample()
obs, rew, d, info = env.step(ac)
if i % 10 == 0:
env.render(mode=render_mode)
if d:
print('After ', i, ' steps, done: ', d)
env.reset()
env.close()