fancy_gym/alr_envs/alr/mujoco/beerpong/mp_wrapper.py

40 lines
1.1 KiB
Python

from typing import Tuple, Union
import numpy as np
from mp_env_api.interface_wrappers.mp_env_wrapper import MPEnvWrapper
class MPWrapper(MPEnvWrapper):
@property
def active_obs(self):
# TODO: @Max Filter observations correctly
return np.hstack([
[False] * 7, # cos
[False] * 7, # sin
# [True] * 2, # x-y coordinates of target distance
[False] # env steps
])
@property
def start_pos(self):
return self._start_pos
@property
def current_pos(self) -> Union[float, int, np.ndarray, Tuple]:
return self.sim.data.qpos[0:7].copy()
@property
def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
return self.sim.data.qvel[0:7].copy()
@property
def goal_pos(self):
# TODO: @Max I think the default value of returning to the start is reasonable here
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
@property
def dt(self) -> Union[float, int]:
return self.env.dt