fancy_gym/alr_envs/black_box/black_box_wrapper.py

202 lines
9.0 KiB
Python

import os
os.environ["MUJOCO_GL"] = "egl"
from typing import Tuple, Optional
import gym
import numpy as np
from gym import spaces
from mp_pytorch.mp.mp_interfaces import MPInterface
from alr_envs.black_box.controller.base_controller import BaseController
from alr_envs.black_box.raw_interface_wrapper import RawInterfaceWrapper
from alr_envs.utils.utils import get_numpy
class BlackBoxWrapper(gym.ObservationWrapper):
def __init__(self,
env: RawInterfaceWrapper,
trajectory_generator: MPInterface,
tracking_controller: BaseController,
duration: float,
verbose: int = 1,
learn_sub_trajectories: bool = False,
replanning_schedule: Optional[callable] = None,
reward_aggregation: callable = np.sum
):
"""
gym.Wrapper for leveraging a black box approach with a trajectory generator.
Args:
env: The (wrapped) environment this wrapper is applied on
trajectory_generator: Generates the full or partial trajectory
tracking_controller: Translates the desired trajectory to raw action sequences
duration: Length of the trajectory of the movement primitive in seconds
verbose: level of detail for returned values in info dict.
learn_sub_trajectories: Transforms full episode learning into learning sub-trajectories, similar to
step-based learning
replanning_schedule: callable that receives
reward_aggregation: function that takes the np.ndarray of step rewards as input and returns the trajectory
reward, default summation over all values.
"""
super().__init__(env)
self.duration = duration
self.learn_sub_trajectories = learn_sub_trajectories
self.do_replanning = replanning_schedule is not None
self.replanning_schedule = replanning_schedule or (lambda *x: False)
self.current_traj_steps = 0
# trajectory generation
self.traj_gen = trajectory_generator
self.tracking_controller = tracking_controller
# self.time_steps = np.linspace(0, self.duration, self.traj_steps)
# self.traj_gen.set_mp_times(self.time_steps)
self.traj_gen.set_duration(np.array([self.duration]), np.array([self.dt]))
# reward computation
self.reward_aggregation = reward_aggregation
# spaces
self.return_context_observation = not (learn_sub_trajectories or self.do_replanning)
self.traj_gen_action_space = self._get_traj_gen_action_space()
self.action_space = self._get_action_space()
self.observation_space = self._get_observation_space()
# rendering
self.render_kwargs = {}
self.verbose = verbose
def observation(self, observation):
# return context space if we are
obs = observation[self.env.context_mask] if self.return_context_observation else observation
# cast dtype because metaworld returns incorrect that throws gym error
return obs.astype(self.observation_space.dtype)
def get_trajectory(self, action: np.ndarray) -> Tuple:
clipped_params = np.clip(action, self.traj_gen_action_space.low, self.traj_gen_action_space.high)
self.traj_gen.set_params(clipped_params)
# TODO: Bruce said DMP, ProMP, ProDMP can have 0 bc_time for sequencing
# TODO Check with Bruce for replanning
self.traj_gen.set_boundary_conditions(
bc_time=np.array(0) if not self.do_replanning else np.array([self.current_traj_steps * self.dt]),
bc_pos=self.current_pos, bc_vel=self.current_vel)
# TODO: is this correct for replanning? Do we need to adjust anything here?
self.traj_gen.set_duration(None if self.learn_sub_trajectories else np.array([self.duration]),
np.array([self.dt]))
traj_dict = self.traj_gen.get_trajs(get_pos=True, get_vel=True)
trajectory_tensor, velocity_tensor = traj_dict['pos'], traj_dict['vel']
return get_numpy(trajectory_tensor), get_numpy(velocity_tensor)
def _get_traj_gen_action_space(self):
"""This function can be used to set up an individual space for the parameters of the traj_gen."""
min_action_bounds, max_action_bounds = self.traj_gen.get_param_bounds()
action_space = gym.spaces.Box(low=min_action_bounds.numpy(), high=max_action_bounds.numpy(),
dtype=self.env.action_space.dtype)
return action_space
def _get_action_space(self):
"""
This function can be used to modify the action space for considering actions which are not learned via motion
primitives. E.g. ball releasing time for the beer pong task. By default, it is the parameter space of the
motion primitive.
Only needs to be overwritten if the action space needs to be modified.
"""
try:
return self.traj_gen_action_space
except AttributeError:
return self._get_traj_gen_action_space()
def _get_observation_space(self):
mask = self.env.context_mask
if not self.return_context_observation:
# return full observation
mask = np.ones_like(mask, dtype=bool)
min_obs_bound = self.env.observation_space.low[mask]
max_obs_bound = self.env.observation_space.high[mask]
return spaces.Box(low=min_obs_bound, high=max_obs_bound, dtype=self.env.observation_space.dtype)
def step(self, action: np.ndarray):
""" This function generates a trajectory based on a MP and then does the usual loop over reset and step"""
# TODO remove this part, right now only needed for beer pong
mp_params, env_spec_params = self.env._episode_callback(action, self.traj_gen)
trajectory, velocity = self.get_trajectory(mp_params)
trajectory_length = len(trajectory)
rewards = np.zeros(shape=(trajectory_length,))
if self.verbose >= 2:
actions = np.zeros(shape=(trajectory_length,) + self.env.action_space.shape)
observations = np.zeros(shape=(trajectory_length,) + self.env.observation_space.shape,
dtype=self.env.observation_space.dtype)
infos = dict()
done = False
for t, (pos, vel) in enumerate(zip(trajectory, velocity)):
step_action = self.tracking_controller.get_action(pos, vel, self.current_pos, self.current_vel)
c_action = np.clip(step_action, self.env.action_space.low, self.env.action_space.high)
# print('step/clipped action ratio: ', step_action/c_action)
obs, c_reward, done, info = self.env.step(c_action)
rewards[t] = c_reward
if self.verbose >= 2:
actions[t, :] = c_action
observations[t, :] = obs
for k, v in info.items():
elems = infos.get(k, [None] * trajectory_length)
elems[t] = v
infos[k] = elems
if self.render_kwargs:
self.env.render(**self.render_kwargs)
if done or self.replanning_schedule(self.current_pos, self.current_vel, obs, c_action,
t + 1 + self.current_traj_steps):
break
infos.update({k: v[:t + 1] for k, v in infos.items()})
self.current_traj_steps += t + 1
if self.verbose >= 2:
infos['positions'] = trajectory
infos['velocities'] = velocity
infos['step_actions'] = actions[:t + 1]
infos['step_observations'] = observations[:t + 1]
infos['step_rewards'] = rewards[:t + 1]
infos['trajectory_length'] = t + 1
trajectory_return = self.reward_aggregation(rewards[:t + 1])
return self.observation(obs), trajectory_return, done, infos
def render(self, **kwargs):
"""Only set render options here, such that they can be used during the rollout.
This only needs to be called once"""
self.render_kwargs = kwargs
# self.env.render(mode=self.render_mode, **self.render_kwargs)
# self.env.render(**self.render_kwargs)
def reset(self, *, seed: Optional[int] = None, return_info: bool = False, options: Optional[dict] = None):
self.current_traj_steps = 0
return super(BlackBoxWrapper, self).reset()
def plot_trajs(self, des_trajs, des_vels):
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('TkAgg')
pos_fig = plt.figure('positions')
vel_fig = plt.figure('velocities')
for i in range(des_trajs.shape[1]):
plt.figure(pos_fig.number)
plt.subplot(des_trajs.shape[1], 1, i + 1)
plt.plot(np.ones(des_trajs.shape[0]) * self.current_pos[i])
plt.plot(des_trajs[:, i])
plt.figure(vel_fig.number)
plt.subplot(des_vels.shape[1], 1, i + 1)
plt.plot(np.ones(des_trajs.shape[0]) * self.current_vel[i])
plt.plot(des_vels[:, i])