185 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			185 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import os
 | |
| 
 | |
| import numpy as np
 | |
| from gymnasium import utils
 | |
| from gymnasium.envs.mujoco import MujocoEnv
 | |
| 
 | |
| from fancy_gym.envs.mujoco.beerpong.deprecated.beerpong_reward_staged import BeerPongReward
 | |
| 
 | |
| 
 | |
| class BeerPongEnv(MujocoEnv, utils.EzPickle):
 | |
|     def __init__(self, frame_skip=2):
 | |
|         self._steps = 0
 | |
|         # Small Context -> Easier. Todo: Should we do different versions?
 | |
|         # self.xml_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets",
 | |
|         #                              "beerpong_wo_cup" + ".xml")
 | |
|         # self._cup_pos_min = np.array([-0.32, -2.2])
 | |
|         # self._cup_pos_max = np.array([0.32, -1.2])
 | |
| 
 | |
|         self.xml_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "../assets",
 | |
|                                      "beerpong_wo_cup_big_table" + ".xml")
 | |
|         self._cup_pos_min = np.array([-1.42, -4.05])
 | |
|         self._cup_pos_max = np.array([1.42, -1.25])
 | |
| 
 | |
|         self._start_pos = np.array([0.0, 1.35, 0.0, 1.18, 0.0, -0.786, -1.59])
 | |
|         self._start_vel = np.zeros(7)
 | |
| 
 | |
|         self.release_step = 100  # time step of ball release
 | |
|         self.ep_length = 600 // frame_skip
 | |
| 
 | |
|         self.reward_function = BeerPongReward()
 | |
|         self.repeat_action = frame_skip
 | |
|         self.model = None
 | |
|         self.site_id = lambda x: self.model.site_name2id(x)
 | |
|         self.body_id = lambda x: self.model.body_name2id(x)
 | |
| 
 | |
|         MujocoEnv.__init__(self, self.xml_path, frame_skip=1)
 | |
|         utils.EzPickle.__init__(self)
 | |
| 
 | |
|     @property
 | |
|     def start_pos(self):
 | |
|         return self._start_pos
 | |
| 
 | |
|     @property
 | |
|     def start_vel(self):
 | |
|         return self._start_vel
 | |
| 
 | |
|     def reset(self):
 | |
|         self.reward_function.reset()
 | |
|         return super().reset()
 | |
| 
 | |
|     def reset_model(self):
 | |
|         init_pos_all = self.init_qpos.copy()
 | |
|         init_pos_robot = self.start_pos
 | |
|         init_vel = np.zeros_like(init_pos_all)
 | |
| 
 | |
|         self._steps = 0
 | |
| 
 | |
|         start_pos = init_pos_all
 | |
|         start_pos[0:7] = init_pos_robot
 | |
| 
 | |
|         # TODO: Ask Max why we need to set the state twice.
 | |
|         self.set_state(start_pos, init_vel)
 | |
|         start_pos[7::] = self.sim.data.site_xpos[self.site_id("init_ball_pos"), :].copy()
 | |
|         self.set_state(start_pos, init_vel)
 | |
|         xy = self.np_random.uniform(self._cup_pos_min, self._cup_pos_max)
 | |
|         xyz = np.zeros(3)
 | |
|         xyz[:2] = xy
 | |
|         xyz[-1] = 0.840
 | |
|         self.sim.model.body_pos[self.body_id("cup_table")] = xyz
 | |
|         return self._get_obs()
 | |
| 
 | |
|     def step(self, a):
 | |
|         crash = False
 | |
|         for _ in range(self.repeat_action):
 | |
|             applied_action = a + self.sim.data.qfrc_bias[:len(a)].copy() / self.model.actuator_gear[:, 0]
 | |
|             self.do_simulation(applied_action, self.frame_skip)
 | |
|             self.reward_function.initialize(self)
 | |
|             # self.reward_function.check_contacts(self.sim)   # I assume this is not important?
 | |
|             if self._steps < self.release_step:
 | |
|                 self.sim.data.qpos[7::] = self.sim.data.site_xpos[self.site_id("init_ball_pos"), :].copy()
 | |
|                 self.sim.data.qvel[7::] = self.sim.data.site_xvelp[self.site_id("init_ball_pos"), :].copy()
 | |
|             crash = False
 | |
| 
 | |
|         ob = self._get_obs()
 | |
| 
 | |
|         if not crash:
 | |
|             reward, reward_infos = self.reward_function.compute_reward(self, applied_action)
 | |
|             is_collided = reward_infos['is_collided']
 | |
|             terminated = is_collided or self._steps == self.ep_length - 1
 | |
|             self._steps += 1
 | |
|         else:
 | |
|             reward = -30
 | |
|             terminated = True
 | |
|             reward_infos = {"success": False, "ball_pos": np.zeros(3), "ball_vel": np.zeros(3), "is_collided": False}
 | |
| 
 | |
|         infos = dict(
 | |
|             reward=reward,
 | |
|             action=a,
 | |
|             q_pos=self.sim.data.qpos[0:7].ravel().copy(),
 | |
|             q_vel=self.sim.data.qvel[0:7].ravel().copy(), sim_crash=crash,
 | |
|         )
 | |
|         infos.update(reward_infos)
 | |
|         return ob, reward, terminated, infos
 | |
| 
 | |
|     def _get_obs(self):
 | |
|         theta = self.sim.data.qpos.flat[:7]
 | |
|         theta_dot = self.sim.data.qvel.flat[:7]
 | |
|         ball_pos = self.data.get_body_xpos("ball").copy()
 | |
|         cup_goal_diff_final = ball_pos - self.data.get_site_xpos("cup_goal_final_table").copy()
 | |
|         cup_goal_diff_top = ball_pos - self.data.get_site_xpos("cup_goal_table").copy()
 | |
|         return np.concatenate([
 | |
|             np.cos(theta),
 | |
|             np.sin(theta),
 | |
|             theta_dot,
 | |
|             cup_goal_diff_final,
 | |
|             cup_goal_diff_top,
 | |
|             self.sim.model.body_pos[self.body_id("cup_table")][:2].copy(),
 | |
|             [self._steps],
 | |
|         ])
 | |
| 
 | |
|     @property
 | |
|     def dt(self):
 | |
|         return super(BeerPongEnv, self).dt * self.repeat_action
 | |
| 
 | |
| 
 | |
| class BeerPongEnvFixedReleaseStep(BeerPongEnv):
 | |
|     def __init__(self, frame_skip=2):
 | |
|         super().__init__(frame_skip)
 | |
|         self.release_step = 62  # empirically evaluated for frame_skip=2!
 | |
| 
 | |
| 
 | |
| class BeerPongEnvStepBasedEpisodicReward(BeerPongEnv):
 | |
|     def __init__(self, frame_skip=2):
 | |
|         super().__init__(frame_skip)
 | |
|         self.release_step = 62  # empirically evaluated for frame_skip=2!
 | |
| 
 | |
|     def step(self, a):
 | |
|         if self._steps < self.release_step:
 | |
|             return super(BeerPongEnvStepBasedEpisodicReward, self).step(a)
 | |
|         else:
 | |
|             reward = 0
 | |
|             terminated, truncated = False, False
 | |
|             while not (terminated or truncated):
 | |
|                 sub_ob, sub_reward, terminated, truncated, sub_infos = super(BeerPongEnvStepBasedEpisodicReward,
 | |
|                                                                              self).step(np.zeros(a.shape))
 | |
|                 reward += sub_reward
 | |
|             infos = sub_infos
 | |
|             ob = sub_ob
 | |
|             ob[-1] = self.release_step + 1  # Since we simulate until the end of the episode, PPO does not see the
 | |
|             # internal steps and thus, the observation also needs to be set correctly
 | |
|         return ob, reward, terminated, truncated, infos
 | |
| 
 | |
| 
 | |
| # class BeerBongEnvStepBased(BeerBongEnv):
 | |
| #     def __init__(self, frame_skip=1, apply_gravity_comp=True, noisy=False, rndm_goal=False, cup_goal_pos=None):
 | |
| #         super().__init__(frame_skip, apply_gravity_comp, noisy, rndm_goal, cup_goal_pos)
 | |
| #         self.release_step = 62  # empirically evaluated for frame_skip=2!
 | |
| #
 | |
| #     def step(self, a):
 | |
| #         if self._steps < self.release_step:
 | |
| #             return super(BeerBongEnvStepBased, self).step(a)
 | |
| #         else:
 | |
| #             reward = 0
 | |
| #             done = False
 | |
| #             while not done:
 | |
| #                 sub_ob, sub_reward, done, sub_infos = super(BeerBongEnvStepBased, self).step(np.zeros(a.shape))
 | |
| #                 if not done or sub_infos['sim_crash']:
 | |
| #                     reward += sub_reward
 | |
| #                 else:
 | |
| #                     ball_pos = self.sim.data.body_xpos[self.sim.model._body_name2id["ball"]].copy()
 | |
| #                     cup_goal_dist_final = np.linalg.norm(ball_pos - self.sim.data.site_xpos[
 | |
| #                         self.sim.model._site_name2id["cup_goal_final_table"]].copy())
 | |
| #                     cup_goal_dist_top = np.linalg.norm(ball_pos - self.sim.data.site_xpos[
 | |
| #                         self.sim.model._site_name2id["cup_goal_table"]].copy())
 | |
| #                     if sub_infos['success']:
 | |
| #                         dist_rew = -cup_goal_dist_final ** 2
 | |
| #                     else:
 | |
| #                         dist_rew = -0.5 * cup_goal_dist_final ** 2 - cup_goal_dist_top ** 2
 | |
| #                     reward = reward - sub_infos['action_cost'] + dist_rew
 | |
| #             infos = sub_infos
 | |
| #             ob = sub_ob
 | |
| #             ob[-1] = self.release_step + 1  # Since we simulate until the end of the episode, PPO does not see the
 | |
| #             # internal steps and thus, the observation also needs to be set correctly
 | |
| #         return ob, reward, done, infos
 |