fancy_gym/alr_envs/open_ai/robotics/fetch/mp_wrapper.py
2021-07-30 11:59:02 +02:00

50 lines
1.9 KiB
Python

from typing import Union
import numpy as np
from mp_env_api import MPEnvWrapper
class MPWrapper(MPEnvWrapper):
@property
def active_obs(self):
return np.hstack([
[False] * 3, # achieved goal
[True] * 3, # desired/true goal
[False] * 3, # grip pos
[True, True, False] * int(self.has_object), # object position
[True, True, False] * int(self.has_object), # object relative position
[False] * 2, # gripper state
[False] * 3 * int(self.has_object), # object rotation
[False] * 3 * int(self.has_object), # object velocity position
[False] * 3 * int(self.has_object), # object velocity rotation
[False] * 3, # grip velocity position
[False] * 2, # gripper velocity
]).astype(bool)
@property
def current_vel(self) -> Union[float, int, np.ndarray]:
dt = self.sim.nsubsteps * self.sim.model.opt.timestep
grip_velp = self.sim.data.get_site_xvelp("robot0:grip") * dt
# gripper state should be symmetric for left and right.
# They are controlled with only one action for both gripper joints
gripper_state = self.sim.data.get_joint_qvel('robot0:r_gripper_finger_joint') * dt
return np.hstack([grip_velp, gripper_state])
@property
def current_pos(self) -> Union[float, int, np.ndarray]:
grip_pos = self.sim.data.get_site_xpos("robot0:grip")
# gripper state should be symmetric for left and right.
# They are controlled with only one action for both gripper joints
gripper_state = self.sim.data.get_joint_qpos('robot0:r_gripper_finger_joint')
return np.hstack([grip_pos, gripper_state])
@property
def goal_pos(self):
raise ValueError("Goal position is not available and has to be learnt based on the environment.")
@property
def dt(self) -> Union[float, int]:
return self.env.dt