fancy_gym/alr_envs/alr/mujoco/beerpong/new_mp_wrapper.py
2022-05-03 19:51:54 +02:00

45 lines
1.7 KiB
Python

from alr_envs.mp.episodic_wrapper import EpisodicWrapper
from typing import Union, Tuple
import numpy as np
import gym
class NewMPWrapper(EpisodicWrapper):
@property
def current_pos(self) -> Union[float, int, np.ndarray, Tuple]:
return self.env.sim.data.qpos[0:7].copy()
@property
def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
return self.env.sim.data.qvel[0:7].copy()
def set_active_obs(self):
return np.hstack([
[False] * 7, # cos
[False] * 7, # sin
[True] * 2, # xy position of cup
[False] # env steps
])
def _step_callback(self, t: int, env_spec_params: Union[np.ndarray, None], step_action: np.ndarray) -> Union[np.ndarray]:
if self.env.learn_release_step:
return np.concatenate((step_action, np.atleast_1d(env_spec_params)))
else:
return step_action
def _episode_callback(self, action: np.ndarray) -> Tuple[np.ndarray, Union[np.ndarray, None]]:
if self.env.learn_release_step:
return action[:-1], action[-1] # mp_params, release step
else:
return action, None
def set_action_space(self):
if self.env.learn_release_step:
min_action_bounds, max_action_bounds = self.mp.get_param_bounds()
min_action_bounds = np.concatenate((min_action_bounds.numpy(), [self.env.action_space.low[-1]]))
max_action_bounds = np.concatenate((max_action_bounds.numpy(), [self.env.action_space.high[-1]]))
self.mp_action_space = gym.spaces.Box(low=min_action_bounds, high=max_action_bounds, dtype=np.float32)
return self.mp_action_space
else:
return super(NewMPWrapper, self).set_action_space()